RAOLO pe BARTOLO!
FRANCO TRICERRI
and EDOQARDO VESENTINI

TN T Y
U ;\w\g

SYMPOSIA MATHEMATICA Vu.,, UME XXXVI



0149.553 9651550

M 275 Manifolds and Geometry
, C?Cf 3 Pisa, 1993

Edited by
Paolo de Bartolomeis
University of Florence

Franco Tricerri
University of Florence

Edoardo Vesentini
Scuola Normale Superiore




Published by the Press Syndicate of the University of Cambridge
The Pitt Building, Trumpington Street, Cambridge CB2 1RP
40 West 20th Street, New York, NY 10011-4211, USA
10 Stamford Road, Oakleigh, Melbourne 3166, Australia

© Istituto Nazionale di Alte Matematica Francesco Severi 1996
First published 1996
Printed in Great Britain at the University Press, Cambridge

Library of Congress cataloguing in publication data is available

A catalogue record for this book is available from the British Library

ISBN 0 521 56216 3 hardback



ISTITUTO NAZIONALE DI ALTE MATEMATICA
FRANCESCO SEVERI

SYMPOSIA MATHEMATICA

Volume XXXVI



Brought together in this book are papers from a conference on differential geometry
held in Pisa, in honour of one of the world's most highly respected geometers,
Eugenio Calabi. The contributions are from many of the leading authorities in this
field and together they cover a wide spectrum of topics and give an unsurpassed
overview of current research into differential geometry.



Preface

A conference on differential geometry was held in Pisa in September 1993, with
the co-operation of the Scuola Normale Superiore di Pisa and the Consiglio
Nazionale delle Richerche.

The days of the conference were graced by the active participation of Eugenio
Calabi, and we wish to dedicate this volume to him. The conference was
organized by a committee consisting of Paolo de Bartolomeis, Franco Tricerri
and Edoardo Vesentini.

While this volume was in preparation, Franco Tricerri and his family met
with a tragic death in China. We cannot pass without paying a tribute to the
memory of a good mathematician and a dear friend.

Paolo de Bartolomeis

Edoardo Vesentini
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Grassman and hyperKahler structures on some
spaces of sections of holomorphic bundles

D. V. Alekseevsky, M. M. Graev *
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November 1, 1995

To Eugenio Calabi

Keywords: twistors , Grassman structures, hyperKahler structures, adjoint
orbits, Kirillov-Kostant form, isotonic curves, relative symplectic structure,
holomorphic momentum maps

Abstract

A holomorphic submersion 7 : Z — @ P* over a projective line
is considered. On an open submanifold M of the complex manifold
of sections, a right flat Grassman structure is defined, that is an
isomorphism TM = E ® H of the holomorphic tangent bundle
TM onto tensor product of a holomorphic vector bundle £ and
the trivial bundle H = @'. If a conformal symplectic structure
(w) which depends holomorphically on a fiber is given, then the
Grassman structure reduces to a Spy; ® idg-structure. For [ = 2
it admits unique torsionless connection and is identified with a
complex hyperKahler structure. This construction is applied to
the case when a fiber of the submersion 7 is an adjoint orbit of a
complex semisimple Lie group G of automorphisms of 7. With the
help of the momentum mapping, such submersions are described
as being associated with polynomials with coefficients from the
Lie algebra of G. The generalized hyperKéhler structures on the
corresponding space of sections are described.

Acknowledgement. The first author would like to thank
M. Berger (IHES) and Th. Friedrich (Humboldt University Berlin)
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1 Grassman type structures as G-structures

1.1 Notations

We shall assume that all objects considered are complex and holomorphic
unless otherwise stated.

In particular M, Q denote complex manifolds, T'M is the holomorphic tangent
bundle of M, T stands for a complex vector space, GL(T') is the complex
general linear group and so on.

1.2 Grassman structure on a vector space

Let T,E,H be vector spaces. A Grassman structure of type (£, H) on a
vector space T' is an isomorphism £ @ H — T

If a Grassman structure is given we will identify 7" with £ ® H.

Note that the direct product GL(E) x GL(H) of the general linear groups
acts naturally on T' = E ® H with the kernel @* = {(aidg,a 'idy),a €C*}.
We denote the corresponding subgroup of GL(T) by GL(E) ® GL(H). More
generally, any subgroups K of GL(E) and L of GL(H) define a subgroup of
GL(E)® GL(H) which is denoted by K ® L.

Two Grassman structures of type (E, H) on a vector space 1" are called equiv-
alent if they are differ by an element from GL(E) ® GL(H).

Lemma 1.1:

1. Let K, L be connected semisimple Lie groups and p be an irreducible
representation of the group K x L on a vector space T'. Then T' admits a
Grassman structure 7' = E® H such that p(K x L) C GL(E)®@GL(H).

This structure is unique up to equivalence.

2. Let p be a representation of a connected Lie group L on a vector space
T such that L-module T has a decomposition

T=rH=H®..®H,

where H is an irreducible L-module of dimension > 1. Then there exists
a unique (up to an equivalence) Grassman structure 7' = EQH,E ="
on T such that p(L) € id ® pg (L) where pg is the restriction of p onto
H.
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These are standard results from representation theory. Note that (1) is not
true for real representations.

1.3 Grassman structures and subordinated structures
on a manifold

Let G C GL(T) be a (complex) linear group,T' = @™. Recall that a (complex)
G-structure on a (complex) manifold M is a principal G-bundle 7 : Q — M =
@ /G over n-dimensional manifold M (with a left holomorphic action of G into
@) together with a displacement form 6 : TQ — T that is a G-equivariant
T-valued strictly horizontal (Ker § = T%Q) 1-form. (Here T%(Q stands for the
vertical subbundle of the tangent bundle 7'Q)). This difinition is equivalent
to the standard definition of G-structure as a principal G-subbundle of the
bundle of coframes. Now we fix a Grassman structure 7' = E ® H in the
vector space 7.

Definition 1.1: G-structure 7 : Q — M is called
1. Grassman structure if G = GL(E) ® GL(H)
2. unimodular Grassman structure if G = SL(E) ® SL(H)

3. quaternionic Grassman structure if G = GL(E) ® Slem], where SL[2m]
is the linear group defined by irreducible representation of SL, in the
space H = §™@?) =™+

4. bisymplectic structure if G = Sp(E)® Sp(H ), where Sp(E), Sp(H) are

symplectic groups of the symplectic vector spases E,H

5. symplecto-orthogonal structure if G = Sp(E) ® SO(H), where SO(H)
1s the orthogonal group

6. HyperKahler Grassman structure if G = Sp(F) ® 1
7. right-flat Grassman structure if G = GL(E) ® 1

We will refer to these G-structures as G-structures of Grassman type. We
note that the Grassman structure was defined and studied firstly by Th.
Hangan [Han],see also [Ak],[Man],[Mar|,[Bai-East]. Let 7 : @ — M be a
Grassman structure on M. The holomorphic vector bundles E(r), H(7) with
fibers E,H associated with = and the representation of GL(E) ® GL(H) in
the space £,H are called spinor bundles. By definfition

E(r)=Ex¢Q=ExQ/G

It is easy to check that
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TM ~ E(r)® H(r)

canonically. Conversely, any isomorphism of T'M with the tensor product of
two holomorphic vector bundles defines a Grassman structure on M.

1.4 D-connections

Let 7 : Q — M be a G-structure. Note that a horizontal subspace H of the
tangent space T,Q ( i.e. a subspace complementary to the vertical subspace
T;Q ) may be identified with the 1-jet of a section of m. We denote the set
of all horizontal subspaces by J*(r). It is a principal bundle over ) with the
vector group Hom(7T,G) = G ® T* as the structure group where G is the Lie
algebra of G. The structure function of 7 is defined as a function

t:JYr) — T ® A*T*
given by
ty(u,v) = d0(05 u, 05" v)

for H € J*(x), u,v € T, where g = 6 |g: H — T is the isomorphism defined
by the restriction of the displacement form.

A connection in a G-structure = is a G-invariant section of the bundle
J}(r) — @, or, in other words, a G-invariant field

H:Q>p— H, CT,Q,

of horizontal subspaces.

The connection form of a connection H is defined as G-valued holomorphic
1-form o on @ with the kernel H which prolongs the vertical parallelism
v:T°Q — G ( ie. the canonical identification of vertical tangent spaces
T® P with the Lie algebra G of G). Note that it may be considered as a
connection on M with holonomy group Hol(V) C G. Assume now that G is
a reductive linear group. Then we may choose a G-invariant complement D
to the subspace G ® T* NT ® A2T™ into T ® A?T*. A connection H in a G-
structure 7 is called D-connection [Al-Mar] if the restriction of the structure
function ¢ to the submanifold H(M) = {H,,p € Q} C J*(Q) take values in
D. Assume that G is a linear group of type one, that is the first prolongation

G =T NnT® S*T"

of its Lie algebra is zero. Then there exists a unique D-connection which is
given by

Q>3pr— Hy,=J)(r)Nt~ (D).
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Note that all linear Lie groups from Definition 1.1 are reductive. From
classification of reductive linear Lie groups which have non-trivial first pro-
longation [Kob-Nag] it follows that all these groups with the exception of
GL(E)® GL(H) has type 1 and the group GL(E) ® GL(H) has type 2. We
obtain

Corollary: Any G-structure of Grassman type different from Grassman str-
ucture admit a unique D-connection.

Recall that a G-structure is said to be 1-integrable if it admites a torsionless
connection. Note that in this case any D-connection has no torsion.

2 Grassman type structures on manifolds of
isotonic curves and sections

2.1 Isotonic bundles

Recall that any line bundle over projective line@ P! = IP is isomorphic to the
line bundle O(m) = O(1)™ for some integer m where O(1) is the standard
line bundle of hyperplanes with Chern class ¢; = 1. The authomorphism
group Aut(O(m)) of the line bundle O(m) , m # 0,is isomorphic to GL3. It

acts irreducibly on the space of sections
FO(m) ~ S™@? ~qgm™+!

for m > 0. By Grothendieck’s Theorem any vector bundle N over IP is
isomorphic to a direct sum of line bundles that is

N~ri0(a) & ... ®rpO0(ag).

Definition: A holomorphic vector bundle N of rank r over projective line
IP is called isotonic with tone m € Z if it is decomposed into a direct sum of
r copies of the line bundle O(m):

N ~rO(m). (2.1)

Note that isotonic bundles are exactly semistable bundles over IP.

Lemma 2.1: Let N be an isotonic vector bundle over IP with tone m. Then
the space I'N of sections carries canonical Grassman structure

IN=FE®H

E =T(N(-m)) ~@", H =T0(m)~@™
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which is invariant under the action p of the automorphism group Aut(N) on

I'N and

p(Aut(N)) = GL(E) ® SL§™, (2.2)
where SL[gm] is the irreducible linear group defined by the action of SLy C
AutO(m) on TO(m).

Proof: We can write TN = ['(N(—m) ® O(m)) = TN(—m) ® I'O(m) where
N(-m) = N ® O(-m). By (2.1) N(—m) is a trivial bundle and, hence,
IN(—m) ~d" .

From the isomorphism (2.1) , we derive that Aut(N) = GL, ® SL[zm], where
SL[Qm] is an extension of the action of SLs on IP to an action on rO(m) ~ N
by automorphism. Since the group GL, ® SL[zm] acts irreducibly on I' NV,
the existence of a unique invariant Grassman structure on I''V follows from
Lemma 1.1.

2.2 Isotonic curves

Definition: A rational curve P in a complex (r + 1)-dimensional manifold
Z is called isotonic with tone m (or m-isotonic for short) if its normal bundle
Np = Tz /Tp is isotonic that is

Np ~ rOp(m).
More precisely this means that for any parametrisation f : IP — P, the bun-

dle f*Np over IP is isomorphic to rO(m).

Since any two parametrizations differ by an element from Aut(/P) = PL,,
this definition is consistent. Moreover, in the space ' Np of sections there
exists a canonical Grassman structure

I'Np=Ep® Hp

given by Lemma 2.1.

Let m > —1 . An isomorphism ¢ : Np — r@O(m) of the normal bundle Np
onto the standard bundle rO(m) over IP induces an isomorphism

¢:I'Np = T'(rO(m)) =C" @ TO(m).
We say that ¢ is an admissible coframe of ' Np. The group
Aut (rO(m)) = GL, ® SLM

acts simply transitively on the set @p of admissible coframes by



8 ALEKSEEVSKY & GRAEV: Grassman & hyperKahler structures

Aut (rO(m)) > A: ¢ — Ao
Let
M>z — P(z)CZ

be a holomorphic family of rational curves in Z (in the sense of Kodaira)
parametrized by an n-dimensional connected complex manifold M. Denote
by A = {(z,2) € M x Z, z € M} the incidence graph of the family. The

natural projection
A—-M

is a submersion by definition. It is locally trivial since all fibers are rational
curves.

Assume now that all curves P(z) are isotonic. Note that tone of P(z) is equal
to

m = pu (Np(m)) = (Np(,)> /rs r = rank (Np(x)).

Hence, it doesn’t depend on z € M. Now we define @) as set of admissible
coframes

¢ : T Np(z) — @" @ TO(m).

in the space of sections of the normal bundle Np)y = Tz/Tp(s) for z € M.

The group GL, ® SL[m] acts on @ freely with the orbit space M. From

local triviahtPl of the submersion A — M , it follows that @ — M =
Q/GL, ® SLj ™ s a (holomorphic) GL, ® SL[ 1 principal bundle.

Moreover the (holomorphic) vector bundle
S: M>3>z FNP(I)

is associated to the principal bundle @ and the action of GL, ® SL[zm} on
C" @ TO(m). We say that Q is the bundle of admissible coframes of the vec-
tor bundle S.

Suppose now that the family = + P(z) of isotonic curves is maximal at each
point z € M. Then by Kodaira’s Theorem the vector bundle S is identified
with the tangent bundle T M. Using the rigidity of the complex structure in
@' P! and the normal bundle of isotonic curve and applying Kodaira’s Theo-
rem, we obtain

Proposition 2.2: Let P is a isotonic curve with tone m > —1 in a (r + 1)-
manifold Z.
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Then there exist a mazimal family M > = +— P(z) of m-isotonic curves
which contains P = P(z) and is parametrized by a connected r(m +1)-
dimensional complex manifold M. Moreover, the germ of the family in
P is unique up to an equivalence.

Moreover the manifold M carries natural GL, ® Slem]—structure Q— M.

In particular TM = EQ H, where E, H are vector bundles over M assosiated
with Q and the standard irreducible representation of GL, ® SL[Zm] in
@ and TO(m) =@™*, respectively.

Proof: (1) follows from Kodaira Theorem and the equalities
Hl(Tp) = Hl(Ende) = HI(NP) = 0.

Taking into account the last equality, Kodaira Theorem states that the tan-
gent space T, M for any z € M is identified with ' Np(,) . Hence, the bundle
§ = TM and the principal GL, ® SL{™-bundle Q — M is a bundle of
coframes of the tangent bundle. This implies (2) and (3).

2.3 Isotonic sections

Let # : Z — IP be a holomorphic fibration over the projective line and
dimZ = r +1. A section f : IP — Z is called m-isotonic if the curve f(IP) is
m-isotonic. As a corollary of Proposition 2.2 we obtain

Proposition 2.3: Any m-isotonic section f of a fibration 7 : Z — IP us
contained into a family of m-isotonic sections which is parametrized by an
r(m + 1)-dimensional manifold M.The manifold M carries natural right flat
Grassman structure(that is a GL, ® 1y41-structure ).

Proof: Since a sufficiently small deformation of the curve defined by a section
remains a section, the first statement follows from Proposition 2.2. To prove
the second, we identify the normal bundle N; of a section from M with the
bundle f*N; over the projective line. Then we have

T, M = T'N; = T(Ny(=m) & Op(m)) = [(Ny(~m)) ® TOp(m) = E; ® H,
where H = 'Op(m) is a fixed vector space. Hence, the tangent bundle T'M

is identified with tensor product of the vector bundle £ : f — E; and the
trivial bundle H. This shows that M carries a right flat Grassman structure.



