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PREFACE

The economic world is a misty region.

The first explorers used unaided vision.

Mathematics is the lantern by which what was before
dimly visible now looms up in firm, bold outlines.

The old phantasmagoria® disappear.

We see better. We also see further.

—Irving Fisher (1892)

This book is intended for advanced undergraduate and graduate students of economics whose
mathematical requirements go beyond the material usually taught in undergraduate courses.
In particular, it presents most of the mathematical tools required for typical graduate courses
in economic theory—both micro and macro. The volume has many references to Sydszter
and Hammond’s Essential Mathematics for Economic Analysis (Pearson Education, 2002)
[generally referred to as EMEA throughout this successor volume], but that book is by no
means a prerequisite. Indeed, this volume is designed to be accessible to anybody who
has had a basic training in mathematical analysis and linear algebra at the level often en-
countered in courses taught to economics undergraduates. Like EMEA, the treatment here
is deliberately quite rigorous, but rigour is not emphasized for its own sake.

An important aspect of the book is its systematic treatment of the calculus of variations,
optimal control theory, and dynamic programming. Recent years may have seen control
theory lose some of its prominence in economics, but it is still useful in several areas, not-
ably resource economics and industrial organization. Furthermore, in our view the existing
economics literature has paid too little attention to some of the subtler issues that frequently
arise, especially when the time horizon is infinite.

Some early chapters review and extend elementary matrix algebra, multivariable calcu-
lus, and static optimization. Other chapters present multiple integration, as well as ordinary
difference and differential equations, including systems of equations. There is a chapter on
elementary topology in R” and separation theorems. In the final chapter we discuss set-
valued functions (“correspondences”) and the fixed point theorems that economists most
often use.

As the title suggests, this is a mathematics book with the material arranged to allow pro-

1“Phantasmagoria” is a term invented in 1802 to describe an exhibition of optical illusions pro-
duced by means of a magic lantern.
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gressive learning of mathematical topics. If the student acquires some economic insight and
intuition at the same time, so much the better. At times, we do emphasize economics not only
to motivate a mathematical topic, but also to help acquire mathematical intuition. Obviously,
our economic discussions will be more easily understood by students who already have a
certain rudimentary understanding of economics, especially of what economics should be
about.

In particular, this is not a book about economics or even about mathematical economics.
As one reviewer of EMEA put it: “Mathematics is the star of the show”. We expect students
to learn economic theory systematically in other courses, based on other books or articles.
We will have succeeded if they can concentrate on the economics in these courses, having
mastered beforehand the relevant mathematical tools we present.

Almost every section includes worked examples and problems for students to solve as
exercises. Many of the problems are quite easy in order to build the students’ confidence in
absorbing the material, but there are also a number of more challenging problems. Concise
solutions to odd-numbered problems are suggested. Solutions to even-numbered problems
will be available to instructors in a manual that can be downloaded from a restricted access
part of an associated website. That website will also include other supplementary material,
including exam type problems that instructors might find useful for assignments or even
exams.

The book is not intended to be studied in a steady progression from beginning to end.
Some of the more challenging chapters start with a simple treatment where some technical
aspects are played down, while the more complete theory is discussed later. Some of the
material, including more challenging proofs, is in small print. Quite often those proofs rely
on technical ideas that are only expounded in the last two chapters.

The author team consists of the two co-authors of EMEA, together with two other mathe-
maticians in the Department of Economics at the University of Oslo.

Knut Sydsceter, Peter Hammond, Atle Seierstad, and Arne Strom

Oslo and Stanford, December 2004
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TOPICS IN LINEAR
ALGEBRA

| came to the position that mathematical analysis is not one of
many ways of doing economic theory: It is the only way. Economic
theory is mathematical analysis. Everything else is just

pictures and talk.

—R. E. Lucas, Jr. (2001)

his chapter covers a few topics in linear algebra that are not always treated in standard

mathematics courses for economics students. We assume that the reader has previously
studied some basic concepts and results, which are briefly reviewed in Section 1.1. A fuller
treatment including many practice problems, can be found in EMEA, or in many alternative
textbooks.

Next we consider partitioned matrices. These are useful for computations involving large
matrices, especially when they have a special structure.

In an economic model described by a linear system of equations, it is important to know when
that system has a solution, and when the solution is unique. General conditions for existence
and uniqueness are most easily stated using the concept of linear independence, along with the
related concept of the rank of a matrix. These topics are treated in Sections 1.3 and 1.4.

The implications of these ideas for solving linear systems is the topic of Section 1.5.

This chapter also discusses eigenvalues, which are indispensable in several areas of math-
ematics of interest to economists—in particular, stability theory for difference and differential
eguations. Eigenvalues and the associated eigenvectors are also important in determining when
a matrix can be “diagonalized”, which greatly simplifies some calculations involving the matrix.
The chapter concludes by looking at quadratic forms— first without linear constraints, then
with them. Such quadratic forms are especially useful in deriving and checking second-order
conditions for multivariable optimization.
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Review of Basic Linear Algebra

An m x n matrix is a rectangular array with m rows and n columns:

an a2 ... Qn
a a2 ... Q2

A= (aij)mxn = . . . 0
Any QGu2 ... Qmn

Here a;; denotes the element in the ith row and the jth column.
If A = (@ij)mxn>» B = (bij)mxn, and « is a scalar, we define

A+B = (aij+bij)mxn , QA= (aaij)mxn , A-B=A+(-1)B= (aij_bij)mxn (2)

Suppose that A = (a;j)mxn and that B = (b;j)nxp. Then the product C = AB is the
m x p matrix C = (¢ij)mxp, Whose element in the ith row and the jth column is the inner
product (or dot product) of the ith row of A and the jth column of B. That is,

n
cij = Zairbrj =ai1bj +ainbyj + - + aibkj + - - - + inbyj 3
r=1
It is important to note that the product AB is defined only if the number of columns in A is
equal to the number of rows in B.
If A, B, and C are matrices whose dimensions are such that the given operations are
defined, then the basic properties of matrix multiplication are:

(AB)C = A(BC) (associative law) 4)
AB+C) =AB+ AC (left distributive law) 5)
(A+B)C=AC+BC (right distributive law) 6)

If A and B are matrices, it is possible for AB to be defined even if BA is not. Moreover,
evenif AB and BA are both defined, AB is not necessarily equal to BA. Matrix multiplication
is not commutative. In fact,

AB # BA, except in special cases ©)
AB = 0 does not imply that A or B is 0 8)
AB = AC and A # 0 do not imply that B =C )

By using matrix multiplication, one can write a general system of linear equations in a
very concise way. Specifically, the system

anxy+ apxa+ -+ apx, = by

a1x1 + anxs + -+ apxp = by

can be written as Ax=Db
Am1X1 + amaxy + - - - + AunXn = by
a)y a2 ... an X b
i aj) an .. Qop X2 bz
if we define A = . . ) , X= , b= .

aml QGm2 ... Qmn Xn b
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A matrix is square if it has an equal number of rows and columns. If A is a square matrix
and 7 is a positive integer, we define the nth power of A in the obvious way:

A" =AA.--A (10)
N e’

n factors

For diagonal matrices it is particularly easy to compute powers:

d 0 ... 0 a0 ... 0
0 do ... 0 0 4 ... 0

= . . . ) = D'=| . . (11)
0 0 ... d, 0 0 .. a

The identity matrix of order n, denoted by I, (or often just by I, is the n x n matrix having
ones along the main diagonal and zeros elsewhere:

1 0 ... 0
01 ... 0 .

I, = coa . (identity matrix) (12)
0 0 ... 1/ 4

If A is any m X n matrix, then AI, = A = I,,A. In particular,
Al, =1,A = A forevery n x n matrix A (13)
If A = (aij)mxn is any matrix, the transpose of A is defined as A’ = (aji)nxm. The
subscripts i and j are interchanged because every row of A becomes a column of A’, and
every column of A becomes a row of A’.
The following rules apply to matrix transposition:

@AY =A (i)(A+B)Y=A"+B" (i) (@A) =aA’ (iv) (AB) =B'A" (14)

A square matrix is called symmetric if A = A’

Determinants and Matrix Inverses

Recall that the determinants |[A| of 2 x 2 and 3 x 3 matrices are defined by

Al = |1 d2| _
A| = = anan — aan
a1 axp
ai; ap a3
Al = aj1axasz — a11a3a3; + a12a3a3)
Al = |a21 an axs|=
— appa1ass + a13az1as — aj3anasg

asy aszx  asz

Determinants of order 2 and 3 have a geometric interpretation which is shown and explained
in Fig. 1 for the case n = 3.
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(a31,a32,a33) .-~ ' o™
/ { /  the volume of the ay ap ap
! ) L4 13 »
Han, azt, az3) ! box” spanned by = £|ax axn ax
”””” o the three vectors az| axnp a3

(aj1, a2, a13)

\x

Figure 1

For a general n x n matrix A = {a;;}, the determinant |A| can be defined recursively. In
fact,

|Al = ainAi + anAin + -+ +aijAij + - + ainAin (15)
where the cofactors A;; are determinants of (n — 1) X (n — 1) matrices given by
ai ai,j—1 a4ty a4 j+1 Ain
aszi az,j—1  aij 42,j+1 aon
Ay = (=)' (16)
T 1,]— 7 1,7 in
anl An,j—1 Qnj  Qn j+1 Ann

Here lines have been drawn through row i and column j, which are to be deleted from the
matrix A to produce A;;. Formula (15) gives the cofactor expansion of |A| along the ith

row.
In general,
ainAi1 +ai2Ain + - -+ ainAin = |A| am
aj1Axt + apnA + -+ ainAkn =0 (k #1)
ajjArj +azjAzj + -+ anjAy = |A| (18)
aijAi +azjAs+ -+ anjAp =0 (k # j)

This result says that an expansion of a determinant along row i in terms of the cofactors
of row k vanishes when k # i, and is equal to |A| if £k = i. Likewise, an expansion along
column j in terms of the cofactors of column k vanishes when k # j, and is equal to |A| if
k=j.

The following rules for manipulating determinants are often useful:

If two rows (or two columns) of A are interchanged, the determinant

changes sign but its absolute value remains unchanged. (19)
If all the elements in a single row (or column) of A are multiplied

: . : 3d (20)
by a number ¢, the determinant is multiplied by c.
If two of the rows (or columns) of A are proportional, then |[A| = 0. 21
The value of |A| remains unchanged if a multiple of one row (or one 22)

column) is added to another row (or column).
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Furthermore,
|A’| =|A], where A’ is the transpose of A (23)
|AB| = |A| - |B| (24)
|A + B| # |A| + [B| (usually) (25)

The inverse A~! of an n x n matrix A has the following properties:
B=A"! < AB=1, < BA=], (26)
A lexists < |A| #0 27N

If A = (a@ij)nxn and |A| # 0, the unique inverse of A is given by

Ay Ay -0 Ap
1 Ap An -+ Am

Al = i), where aditd)=| 7 T ; (28)
Aln Ay - Ann

with A;;, the cofactor of the element g;;, given by (16). Note carefully the order of the

indices in the adjoint matrix, adj(A) with the column number preceding the row number.

The matrix (A;;),xn is called the cofactor matrix, whose transpose is the adjoint matrix.
In particular, for 2 x 2 matrices,

a b\ 1 d —b\ .
= if
c d ad — bc \ —c¢ a

The following are important rules for inverses (when the relevant inverses exist):

a b
c d

‘:ad—bc;éO (29)

A HT=A, AB)'=B'A7", A T=@A""Y, (A=A (30)

Cramer's Rule
A linear system of n equations and n unknowns,

anxy +apxy + -+ apx, = by

ayixy + aynxy+ -+ amxn = by 31

an1 X1 + ap2X2 + -+ + QupXn = bn

has a unique solution if and only if |A| = |(a;;)nxn| # 0. The solution is then
|A;]
X = —- =1,2,...,n (32)
T Al
where the determinant
ay ... arj-1 by ayjn ... an

a ... ayj-1 by azji1 ... az

|Ajl = (33)

apy ... dp j-—1 b,, an.j+1 ... Qnn
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is obtained by replacing the jth column of |A| by the column whose components are by, b,
.vs bp.

If the right-hand side of the equation system (31) consists only of zeros, so that it can

be written in matrix form as Ax = 0, the system is called homogeneous. A homogeneous

system will always have the trivial solution x; = x; = - - - = x, = 0. The following result
is useful.

Ax = 0 has nontrivial solutions <<= [|A|=0 (34)
Vectors

Recall that an n-vector is an ordered n-tuple of numbers. It is often convenient to regard
the rows and columns of a matrix as vectors, and an n-vector can be understood either as a
1 x n matrixa = (a1, as, ..., a,) (@arowvector)orasann x 1 matrixa’ = (ay, a2, ..., a,)’
(a column vector). The operations of addition, subtraction and multiplication by scalars of
vectors are defined in the obvious way. The dot product (or inner product) of the n-vectors
a=(ay,a,...,ay)and b = (by, by, ..., by) is defined as

n
a-b=ab+abr+---+anb, =Zaibi (35)

i=1

Ifa=(ay,...,a,) andb = (by, ..., b,)’ both happen to be n x 1 matrices, a - b is again
given by (35). Then the transpose a’ of a is a 1 x n matrix, and the matrix product a’b is a
1 x 1 matrix. In fact, a’b = a1b; + a2by +--- + a,b, = a-b.

Important properties of the dot product include these: If a, b, and ¢ are n-vectors and o
is a scalar, then

(i)a-b=b-a, (ii)a-(b+c)=a-b+a-.c, (iii)(eda)-b=a-(ab) =a(a-b) (36)

The Euclidean norm or length of the vector a = (a;, a3, ..., a,) is
lall = va-a=/a?+a}+- +a3 37)
Note that ||¢a| = |«|||a]| for all scalars and vectors.

The following useful inequalities hold:

|a-b| < |a] - |b] (Cauchy-Schwarz inequality) (38)
lla+b| < |a| + |Ib]l (triangle inequality for norms) (39)

The angle 6 between nonzero vectors a and b in R” is defined by

a-b
cosf) = ——— @ €[0, 7)) (40)
lall - bl
This definition makes sense because the Cauchy—Schwarz inequality implies that the right-
hand side has absolute value < 1. According to (40), cos@ = O iff a-b = 0. Then
6 =m/2 =90°.
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By definition, a and b in R” are orthogonal if their dot product is 0. In symbols:

alb < a-b=0 (C3))

The straight line through two distinct points a = (a;, ..., a,) andb = (b, ..., b,) in
R" is the set of all x = (x1, ..., x,) in R" such that

x=ta+(1—-1)b 42)

for some real number ¢.
The hyperplane in R” that passes through the point a = (ay, ..., a,) and is orthogonal
to the nonzero vector p = (pi, - .., Pn), is the set of all points x = (x, ..., x,) such that

p-(x—a)=0 43)

Partitioned Matrices and Their Inverses

Many applications of linear algebra deal with matrices of high order. To see the structure of
such matrices and to ease the computational burden in dealing with them, it is often helpful
to partition the matrices into suitably chosen submatrices. The operation of subdividing a
matrix into submatrices is called partitioning.

2 01 0 4
Considerthe 3 x Smatrix A= {1 2 1 3 4 |.The matrix A can be partitioned
0 0 21 4
in a number of ways. For example,
2 0:10 4
: An A
A=12:]34=(11 12) .
"""" o= Ay Ap b

where A1, Aj2, Az, and Ay, are submatrices of dimensions 2 x 2,2 x 3,1 x2,and 1 x 3,
respectively. This is useful because Aj; is a zero matrix. Other less useful partitionings of
A include the one where A is partitioned into three row vectors, and the one where A is
partitioned into five column vectors.

Though Example 1 raises the possibility of partitioning a matrix into arbitrarily many sub-
matrices, the rest of this section considers only partitionings into 2 x 2 arrays of submatrices
as in (x).
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Operations on Partitioned Matrices

One can perform standard matrix operations on partitioned matrices, treating the submatrices
as if they were ordinary matrix elements. This requires obeying the rules for sums, differ-
ences, and products.

Adding or subtracting partitioned matrices is simple. For example,

(An A12)+<B|1 BIZ):<A11+B11 Ap +Bl2> )
Ay Axn By B Ay + By Axn +Bxp

as long as the dimensions of A|; are those of B, the dimensions of A, are those of By,
and so on. The result follows directly from the definition of matrix addition. The rule for

subtracting partitioned matrices is similar.
The rule for multiplying a partitioned matrix by a number is obvious. For example,

a(A” Alz) _ (OtAn OtA12> @
Ay Ap @A oAy
The following example shows how to multiply partitioned matrices.

Let A be the 3 x 5 matrix (*) in Example 1, and let B be the 5 x 4 matrix

1 0 2 1
01105

g | == peoeenes =(B11 Bl2)
00:10 By By
0 0 ; 1 0
0 0 ' 0 1

with the indicated partitioning. The product AB is defined, and the ordinary rules of matrix
multiplication applied to the entire matrices yield

2 0 5 6
AB=(1 2 6 15
0 0 3 4

Consider next how to take advantage of the partitioning of the two matrices to compute the
product AB. Simply multiply the partitioned matrices as if the submatrices were ordinary
matrix elements to obtain

AB — <A11B11 +ABy ABi2 +A12322)
A21Bi +ApBy AyBpp +ApBy

2 0 0 0 4 2 1 4 205 6
= (1 2>+<0 0) (2 11)+(4 4) =|1 2 6 15
(0 0)+ (0 0) (0 0)+ (3 4) 00 3 4

Note that the two matrices A and B were partitioned with dimensions chosen so that all the
needed products of submatrices are well defined.



EXAMPLE 3

SECTION 1.2 / PARTITIONED MATRICES AND THEIR INVERSES 9

The method suggested by Example 2 is valid in general. It is not difficult to formulate and
prove the general result, though the notation becomes cumbersome. If you work through
Problem 1 in detail, the general idea should become clear enough.

Multiplying matrices using partitioning is particularly convenient if the matrices have a
special structure and involve simple submatrices (like identity or zero matrices).

Consider the problem of computing powers of the following matrix with the indicated
partitioning:

i3 1
i 13 0
e | 0 ey

Then

»_ (P Q\ (P Q\_ (P> (P+DQ 3_ (PP P°+P+DQ
(o 1) G 1) = (0 TR e (G )

In general, for all natural numbers 7, it can be shown by induction that

n (P" (P"*'+---+P2+P+I)Q)
M=o 1

Inverses by Partitioning

Inverting large square matrices is often made much easier using partitioning. Consider an
n x n matrix A which has an inverse. Assume that A is partitioned as follows:

A A . . .
A= ( H 12) , where A|; is a k x k matrix with an inverse 3)
Ay Ap

Hence A, isak x (n — k) matrix, Ay is (n —k) x k, while Ay; is an (n — k) x (n — k) matrix.
Since A has an inverse, there exists an n x n matrix B such that AB = 1,,. Partitioning B in

the same way as A yields
B, B )
B =
(le By

The equality AB = I, implies the following four matrix equations for determining By,
B2, B2y, and Byo:

i) AuBi+ApBy =L (i) AuBi+ApBy = 0cxn_s
(iii) A21B11 +A2Bo = 0¢—iyxk iv) A B +AxnBy =1,
where the subscripts attached to I and 0 indicate the dimensions of these matrices. Be-

cause Aj; has an inverse, (ii) gives Bj; = —Al—llAlszz. Inserting this into (iv) gives
(—A2]A1_1]A12 + A2)By = I, 4, and so By, = (Ayp — A21A1_11A12)_1. Next, solve



