
Localized Waves

Edited by
HUGO E. HERNÁNDEZ-FIGUEROA
MICHEL ZAMBONI-RACHED
ERASMO RECAMI

04 L811

Localized Waves

Edited by

HUGO E. HERNÁNDEZ-FIGUEROA MICHEL ZAMBONI-RACHED ERASMO RECAMI

A JOHN WILEY & SONS, INC., PUBLICATION

Copyright © 2008 by John Wiley & Sons, Inc. All rights reserved.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey. Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 750-4470, or on the web at www.copyright.com. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: While the publisher and the author have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives or written sales materials. The advice and strategies contained herein may not be suitable for your situation. You should consult with a professional where appropriate. Neither the publisher nor author shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages.

For general information on our other products and services or for technical support, please contact our Customer Care Department within the United States at (800) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic formats. For more information about Wiley products, visit our Web site at www.wiley.com.

Wiley Bicentennial Logo: Richard J. Pacifico

Library of Congress Cataloging-in-Publication Data:

Localized waves / edited by Hugo E. Hernández-Figueroa, Michel Zamboni-Rached, Erasmo Recami.

p. cm.

ISBN 978-0-470-10885-7 (cloth)

1. Localized waves-Research. I. Hernández-Figueroa, Hugo E.

II. Zamboni-Rached, Michel. III. Recami, Erasmo.

QC157.L63 2007

532'.0593-dc22

2007002548

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

Localized Waves

THE WILEY BICENTENNIAL-KNOWLEDGE FOR GENERATIONS

ach generation has its unique needs and aspirations. When Charles Wiley first opened his small printing shop in lower Manhattan in 1807, it was a generation of boundless potential searching for an identity. And we were there, helping to define a new American literary tradition. Over half a century later, in the midst of the Second Industrial Revolution, it was a generation focused on building the future. Once again, we were there, supplying the critical scientific, technical, and engineering knowledge that helped frame the world. Throughout the 20th Century, and into the new millennium, nations began to reach out beyond their own borders and a new international community was born. Wiley was there, expanding its operations around the world to enable a global exchange of ideas, opinions, and know-how.

For 200 years, Wiley has been an integral part of each generation's journey, enabling the flow of information and understanding necessary to meet their needs and fulfill their aspirations. Today, bold new technologies are changing the way we live and learn. Wiley will be there, providing you the must-have knowledge you need to imagine new worlds, new possibilities, and new opportunities.

Generations come and go, but you can always count on Wiley to provide you the knowledge you need, when and where you need it!

WILLIAM J. PESCE
PRESIDENT AND CHIEF EXECUTIVE OFFICER

PETER BOOTH WILEY CHAIRMAN OF THE BOARD

Contributors

loannis M. Besieris, The Bradley Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia

Martin Bock, Max-Born-Institute for Nonlinear Optics and Short-Pulse Spectroscopy, Berlin, Germany

Zdeněk Bouchal, Department of Optics, Palacký University, Olomouc, Czech Republic

Radek Čelechovský, Department of Optics, Palacký University, Olomouc, Czech Republic

Claudio Conti, Research Center Enrico Fermi, Rome, Italy, and Research Center SOFT INFM-CNR, University La Sapienza, Rome, Italy

Paolo Di Trapani, Dipartimento di Fisica e Matematica, Università degli Studi dell'Insubria sede di Como, Como, Italy

Ari T. Friberg, Department of Microelectronics and Applied Physics, Royal Institute of Technology, Kista, Sweden

Uwe Griebner, Max-Born-Institute for Nonlinear Optics and Short-Pulse Spectroscopy, Berlin, Germany

Ruediger Grunwald, Max-Born-Institute for Nonlinear Optics and Short-Pulse Spectroscopy, Berlin, Germany

Hugo E. Hernández-Figueroa, Faculdade de Engenharia Elétrica e de Computação, Departamento de Microonda e Óptica, Universidade Estadual de Campinas, Campinas, SP, Brazil

Wei Hu, Laboratory of Photonic Information Technology, School for Information and Optoelectronic Science and Technology, South China Normal University, Guangzhou, P. R. China

Davide Janner, Dipartimento di Fisica, Politecnico di Milano, Milan, Italy

Volker Kebbel, Automation and Assembly Technologies GmbH, Bremen, Germany

Sergei V. Kukhlevsky, Department of Experimental Physics, Institute of Physics, University of Pécs, Pécs, Hungary

Stefano Longhi, Dipartimento di Fisica, Politecnico di Milano, Milan, Italy

Jian-yu Lu, Ultrasound Laboratory, Department of Bioengineering, The University of Toledo, Toledo, Ohio

lacopo Mochi, Nello Carrara Institute of Applied Physics-CNR, Florence Research Area, Sesto Fiorentino, Italy

Daniela Mugnai, Nello Carrara Institute of Applied Physics-CNR, Florence Research Area, Sesto Fiorentino, Italy

Uwe Neumann, Max-Born-Institute for Nonlinear Optics and Short-Pulse Spectroscopy, Berlin, Germany

Miguel A. Porras, Departamento de Física Aplicada, Escuela Técnica Superior de Ingenieros de Minas, Universidad Politécnica de Madrid, Madrid, Spain

Erasmo Recami, Facoltà di Ingegneria, Università degli Studi di Bergamo, Bergamo, Italy and INFN-Sezione di Milano, Milan, Italy

Kaido Reivelt, Institute of Physics, University of Tartu, Tartu, Estonia

Peeter Saari, Institute of Physics, University of Tartu, Tartu, Estonia

Janne Salo, Laboratory of Physics, Helsinki University of Technology, Espoo, Finland

Amr M. Shaarawi, Department of Physics, The American University of Cairo, Cairo, Egypt

Günter Steinmeyer, Max-Born-Institute for Nonlinear Optics and Short-Pulse Spectroscopy, Berlin, Germany

Gero Stibenz, Max-Born-Institute for Nonlinear Optics and Short-Pulse Spectroscopy, Berlin, Germany

Grover A. Swartzlander, Jr., College of Optical Sciences, University of Arizona, Tucson, Arizona

Stefano Trillo, Department of Engineering, University of Ferrara, Ferrara, Italy, and Research Center SOFT INFM-CNR, University La Sapienza, Rome, Italy

Michel Zamboni-Rached, Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, SP, Brazil

Preface

Diffraction and dispersion effects have been well known for centuries and are recognized to be limiting factors in many industrial and technology applications based, for example, on electromagnetic beams and pulses. Diffraction is an always-present phenomenon, affecting two- or three-dimensional waves traveling in nonguiding media. Arbitrary pulses and beams contain plane-wave components that propagate in different directions, causing a progressive increase in their spatial width along propagation. Dispersion is due to the dependence of the material media (refractive index) with frequency: therefore, each pulse's spectral component propagates with a different phase velocity, so that an electromagnetic pulse will suffer a progressive increase in its temporal width along propagation. It is clear that these two effects may be a serious restriction for applications where it is highly desirable that the beam keeps its transverse localization or the pulse keeps its transverse localization and/or temporal width along propagation, which might be desirable, for example, in free-space microwave, millimetric wave, terahertz and optical communications, microwave and optical images, optical lithography, and optical tweezers. As a consequence, the development of techniques capable of alleviating signal degradation effects caused by these two effects is of crucial importance.

Localized waves, also known as nondiffractive waves, arose initially as an attempt to obtain beams and pulses capable of resisting diffraction in free space for long distances. Such waves were obtained initially theoretically as solutions to the wave equation in the early 1940s (J. A. Stratton, Electromagnetic Theory, McGraw-Hill, New York, 1941), and were demonstrated experimentally in 1987 (J. Durnin, J. J. Miceli, and J. H. Eberly, Diffraction-free beams, Phys. Rev. Lett., vol. 58, pp. 1499–1501, 1987). Nowadays localized waves constitute a growing and dynamic research topic, not only in relation to nondispersive free space (or vacuum), but also for dispersive, nonlinear, and lossy nonguiding media. Taking into account the significant amount of exciting and impressive results published especially in the last five years or so, we decided to edit a book on this topic, the first of its kind in the literature. The book is composed of 13 chapters authored by the most productive researchers in the field, with a well-balanced presentation of theory and experiment.

In Chapter 1, Recami et al. present a thorough review of localized waves, emphasizing the theoretical foundations along with historical aspects and the interconnections of this subject with other technology and scientific areas.

In Chapter 2, Zamboni-Rached et al. discuss in detail the theoretical structure of localized waves, and some applications are presented, among which frozen waves are of particular interest.

In Chapter 3, Besieris and Shaarawi present a hybrid spectral representation method which permits a smooth transition between two seemingly disparate classes of finite-energy spatiotemporally localized wave solutions to the three-dimensional scalar wave equation in free space: superluminal (X-shaped) and luminal (FWM-type) pulsed waves. An additional advantage of the hybrid form is that it obviates the presence of backward wave components, propagating at the luminal speed c, that have to be minimized in practical applications. A modified hybrid spectral representation method has also been presented which permits a seamless transition from superluminal localized waves to exact luminal splash modes. Within the framework of a certain parametrization, the latter are rendered indistinguishable from the paraxial luminal finite-energy-focused pulsed beam solutions.

In Chapter 4, Jian-yu Lu describes X-waves in depth, providing generalized methods for obtaining such waves through proper transformations, related primarily to the Lorentz transformation. X-wave solutions to Schrödinger and Klein–Gordon equations are also provided. In addition, the potential application of X-waves in medical ultrasound imaging is demonstrated experimentally.

In Chapter 5, Salo and Friberg show theoretically that diffraction-free wave propagation can also be achieved in anisotropic crystalline media. They explicitly analyze the effect of arbitrary anisotropies on both continuous-wave and pulsed nondiffracting fields. Due to beam steering and other effects, generation of nondiffracting waves in anisotropic media poses new challenges, and the authors propose an efficient scheme for the generation and detection of a continuous-wave beam in a crystal wafer.

In Chapter 6, Mugnai and Mochi explore Bessel X-waves' ability to provide localized energy and to exhibit superluminal propagation in both phase and group velocities (as verified experimentally). The authors also describe the ability of such waves to travel through a classically forbidden region (tunneling region) with no shift in the direction of propagation, which makes them different and unique with respect to ordinary waves.

In Chapter 7, Reivelt and Saari focus on the physical nature and experimental implementation or generation of localized waves. The authors demonstrate that the angular spectrum representation and the tilted pulse representation of localized waves are suitable tools for achieving these purposes. They explain the concepts and results of their experiments, where the realizability of Bessel X-waves and focus wave modes was verified for the first time.

In Chapter 8, Porras et al. present an interesting discussion of linear bullets, threedimensional localized waves or particlelike waves propagating across a host medium, defeating diffraction spreading and dispersion broadening. Special attention is given to the generation of these bullets in practical settings by optical devices or by nonlinear means, showing the intimate relation between linear and nonlinear approaches to wave bullets, as in light filaments. The advantage of linear bullets with respect to standard wave packets (Gaussian-like) is also demonstrated for a variety of applications, such as laser writing in thick media, ultraprecise microhole drilling for photonic-crystal fabrication, and laser micromachining.

In Chapter 9, the theory of X-waves in nonlinear materials is discussed thoroughly by Conti and Trillo. Potential applications in light-matter interactions at high laser intensities in quantum optics and on the theoretical prediction of X-waves in Bose–Einstein condensates are pointed out.

In Chapter 10, by Kukhlevsky, the problem of spatial localization of light in free space on a nanometer scale is presented in detail. The author shows that a sub-wavelength nanometer-sized beam propagating without diffractive broadening can be produced by the interference of multiple beams of a Fresnel light source of the respective material waveguide. The results demonstrate theoretically the feasibility of diffraction-free subwavelength-beam optics on a nanometer scale for both continuous waves and ultrashort (near-single-cycle) pulses. The approach extends the operational principle of near-field subwavelength-beam optics, such as near-field scanning optical microscopy, to the "not-too-distant" field regime (up to about 0.5 wavelength). The chapter includes theoretical illustrations to facilitate an understanding of the natural spatiotemporal broadening of light waves and the physical mechanisms that contribute to the diffraction-free propagation of subwavelength beams in free space.

In Chapter 11, Grunwald et al. show experimentally that ultraflat thin-film axicons enable the real physical approximation of nondiffracting beams and X-pulses of extremely narrow angular spectra. By self-apodized truncation of Bessel–Gauss pulses (coincidence of first field minimum with the rim of an aperture), needle-shaped propagation zones of large axial extension can be obtained without additional diffraction effects. The signature of undistorted progressive waves was indicated for such needle beams by the fringe-free propagation characteristics and ultrabroadband spatio-spectral transfer functions.

In Chapter 12, Longhi and Janner provide a general overview of wave localization (in a weak sense) for an important and novel class of inhomogeneous periodic dielectric media (i.e., in photonic crystals), which have received increasing attention in recent years. Compared to wave localization in homogeneous media, such as in a vacuum, the presence of a periodic dielectric permittivity strongly modifies the space—time dispersion surfaces and hence the types of localized waves that may be observed in photonic crystals.

In Chapter 13, Bouchal et al. focus on theoretical and experimental problems of nondiffracting and singular optics. Particular attention is devoted to physical properties, methods of experimental realization, and potential applications of single and composed vortex fields carried by a pseudo-nondiffracting background beam. The unique propagation effects of vortex fields are pointed out, and consequences of their spiral phase singularities manifested by a transfer of the orbital angular momentum are also discussed. The complex vortex structures whose parameters and properties are controlled dynamically by a spatial light modulation provide advanced methods of encoding and recording of information and can be utilized effectively in optical manipulations. Spatially localized vortex structures can be extended into

xviii PREFACE

nonstationary optical fields where novel spatiotemporal effects and applications can be expected.

Acknowledgments

The editors are grateful to all the contributors to this volume for their efforts in producing stimulating high-quality chapters in an area that is not yet well known outside the community of experts, always with the aim of making the area more easily accessible to interested physicists and engineers. For useful discussions they are grateful to, among others, R. Bonifacio, M. Brambilla, R. Chiao, C. Cocca, C. Conti, A. Friberg, G. Degli Antoni, F. Fontana, G. Kurizki, M. Mattiuzzi, P. Milonni, P. Saari, A. Shaarawi, R. Ziolkowski, M. Tygel, and L. Ambrosio.

Preparation of the manuscript was facilitated greatly by George J. Telecki, Rachel Witmer, and Angioline Loredo from Wiley; we thank them for their fine professional work. We are indebted to Kai Chang, Ioannis M. Besieris, and Richard W. Ziolkowski for their crucial and inspirational encouragement. We would also like to thank our wives: Marli de Freitas Gomes Hernández, Jane Marchi Madureira, and Marisa T. Vasconselos, for their continuous loving support.

The Editors

Contents

CO	ONTRIBUTORS		
PRE	FACI	<u> </u>	xv
1	Eras	alized Waves: A Historical and Scientific Introduction smo Recami, Michel Zamboni-Rached, and o E. Hernández-Figueroa	1
	1.1	General Introduction	2
	1.2	More Detailed Information	6
		1.2.1 Localized Solutions	9
	App	endix: Theoretical and Experimental History	17
		Historical Recollections: Theory	17
		X-Shaped Field Associated with a Superluminal Charge	20
		A Glance at the Experimental State of the Art	23
	Refe	erences	34
2		icture of Nondiffracting Waves and Some Interesting	
	Applications		
	Michel Zamboni-Rached, Erasmo Recami, and		
	Hug	o E. Hernández-Figueroa	
	2.1	Introduction	43
	2.2	Spectral Structure of Localized Waves	44
		2.2.1 Generalized Bidirectional Decomposition	46
	2.3	Space–Time Focusing of X-Shaped Pulses	54
		2.3.1 Focusing Effects Using Ordinary X-Waves	55
	2.4	Chirped Optical X-Type Pulses in Material Media	57
		2.4.1 Example: Chirped Optical X-Type Pulse in Bulk	
		Fused Silica	62

ν

vi CONTENTS

	2.5	Model 2.5.1	ling the Shape of Stationary Wave Fields: Frozen Waves Stationary Wave Fields with Arbitrary Longitudinal Shape in Lossless Media Obtained by Superposing	63		
		2.5.2	Equal-Frequency Bessel Beams Stationary Wave Fields with Arbitrary Longitudinal	63		
			Shape in Absorbing Media: Extending the Method	70		
	Refe	erences		76		
3	Two Hybrid Spectral Representations and Their Applications to the Derivations of Finite-Energy Localized Waves and					
		ed Bea		79		
	Ioan	nis M.	Besieris and Amr M. Shaarawi			
	3.1	Introd	uction	79		
	3.2	Overv	iew of Bidirectional and Superluminal			
			ral Representations	80		
		3.2.1	Bidirectional Spectral Representation	81		
		3.2.2	Superluminal Spectral Representation	83		
	3.3		d Spectral Representation and Its Application Derivation of Finite-Energy X-Shaped			
			ized Waves	84		
		3.3.1	Hybrid Spectral Representation	84		
		3.3.2	(3 + 1)-Dimensional Focus X-Wave	85		
		3.3.3	(3 + 1)-Dimensional Finite-Energy X-Shaped			
			Localized Waves	86		
	3.4	Modif	ied Hybrid Spectral Representation and Its Application			
		to the	Derivation of Finite-Energy Pulsed Beams	89		
		3.4.1	Modified Hybrid Spectral Representation	89		
		3.4.2	(3 + 1)-Dimensional Splash Modes and Focused			
			Pulsed Beams	89		
	3.5		usions	93		
	Refe	erences		93		
4		asonic -yu Lu	Imaging with Limited-Diffraction Beams	97		
	4.1	Introd	uction	97		
	4.2	Funda	imentals of Limited-Diffraction Beams	99		
		4.2.1	Bessel Beams	99		
		4.2.2	Nonlinear Bessel Beams	101		
			Frozen Waves	101		
		4.2.4	X-Waves	101		
		4.2.5	Obtaining Limited-Diffraction Beams with Variable			
			Transformation	102		

		4.2.6	Limited-Diffraction Solutions to the Klein–Gordon				
			Equation	103			
		4.2.7	Limited-Diffraction Solutions to the Schrödinger				
			Equation	106			
		4.2.8	Electromagnetic X-Waves	108			
		4.2.9	Limited-Diffraction Beams in Confined Spaces	109			
			X-Wave Transformation	114			
			Bowtie Limited-Diffraction Beams	115			
			Limited-Diffraction Array Beams	115			
		4.2.13	Computation with Limited-Diffraction Beams	115			
	4.3	Applic	eations of Limited-Diffraction Beams	116			
		4.3.1	Medical Ultrasound Imaging	116			
		4.3.2	Tissue Characterization (Identification)	116			
		4.3.3	High-Frame-Rate Imaging	116			
		4.3.4	Two-Way Dynamic Focusing	116			
		4.3.5	Medical Blood-Flow Measurements	117			
		4.3.6	Nondestructive Evaluation of Materials	117			
		4.3.7	Optical Coherent Tomography	117			
		4.3.8	Optical Communications	117			
		4.3.9	Reduction of Sidelobes in Medical Imaging	117			
	4.4	Conclu	usions	117			
	Refe	erences		118			
5		Propagation-Invariant Fields: Rotationally Periodic and Anisotropic Nondiffracting Waves 129					
	Anisotropic Nondiffracting Waves Janne Salo and Ari T. Friberg						
	Jann	ie Salo i	and Art I. Friberg				
	5.1	Introdu	uction	129			
		5.1.1	Brief Overview of Propagation-Invariant Fields	130			
		5.1.2	Scope of This Chapter	133			
	5.2	Rotatio	onally Periodic Waves	134			
		5.2.1	Fourier Representation of General RPWs	135			
		5.2.2	Special Propagation Symmetries	135			
			Monochromatic Waves	136			
		5.2.4	Pulsed Single-Mode Waves	138			
		5.2.5	Discussion	142			
	5.3	Nondi	ffracting Waves in Anisotropic Crystals	142			
		5.3.1	Representation of Anisotropic Nondiffracting Waves	143			
		5.3.2	Effects Due to Anisotropy	146			
		5.3.3	Acoustic Generation of NDWs	148			
		5.3.4	Discussion	149			
	5.4	Conclu	usions	150			
	Refe	erences		151			

viii CONTENTS

6		sel X-Wave Propagation niela Mugnai and Iacopo Mochi	159		
	6.1	Introduction	159		
	6.2	Optical Tunneling: Frustrated Total Reflection	160		
		6.2.1 Bessel Beam Propagation into a Layer:			
		Normal Incidence	160		
		6.2.2 Oblique Incidence	164		
	6.3	Free Propagation	169		
		6.3.1 Phase, Group, and Signal Velocity: Scalar			
		Approximation	169		
		6.3.2 Energy Localization and Energy Velocity:	170		
		A Vectorial Treatment	172		
	6.4	1 1 5	180		
	Refe	erences	181		
7		Linear-Optical Generation of Localized Waves			
	Kaid	do Reivelt and Peeter Saari			
	7.1	Introduction	185		
	7.2	Definition of Localized Waves	186		
	7.3	The Principle of Optical Generation of LWs	191		
	7.4	Finite-Energy Approximations of LWs	193		
	7.5	Physical Nature of Propagation Invariance of Pulsed			
		Wave Fields	195		
	7.6	Experiments	198		
		7.6.1 LWs in Interferometric Experiments	198		
		7.6.2 Experiment on Optical Bessel X-Pulses	200		
		7.6.3 Experiment on Optical LWs	203		
	7.7	Conclusions	211		
	Refe	erences	213		
8	Optical Wave Modes: Localized and Propagation-Invariant Wave Packets in Optically Transparent Dispersive Media Miguel A. Porras, Paolo Di Trapani, and Wei Hu				
	8.1	Introduction	217		
	8.2	Localized and Stationarity Wave Modes Within the SVEA	219		
		8.2.1 Dispersion Curves Within the SVEA	221		
		8.2.2 Impulse-Response Wave Modes	222		
	8.3	Classification of Wave Modes of Finite Bandwidth 8.3.1 Phase-Mismatch-Dominated Case: Pulsed Bessel	224		
		Beam Modes	226		
		8.3.2 Group-Velocity-Mismatch-Dominated Case:			
		Envelope Focus Wave Modes	227		

		8.3.3	Group-Velocity-Dispersion-Dominated Case:		
			Envelope X- and Envelope O-Modes	229	
	8.4	Wave	Modes with Ultrabroad Bandwidth	231	
		8.4.1	Classification of SEWA Dispersion Curves	233	
	8.5		the Effective Frequency, Wave Number, and Phase		
			ity of Wave Modes	236	
	8.6	-	arison Between Exact, SEWA, and SVEA Wave Modes	238	
	8.7	Concl	usions	240	
	Refe	erences		240	
9	Non	linear	X-Waves	243	
	Claı	ıdio Co	nti and Stefano Trillo		
	9.1	Introd	uction	243	
	9.2	NLX I	Model	245	
	9.3	Envelo	ope Linear X-Waves	247	
		9.3.1	X-Wave Expansion and Finite-Energy Solutions	250	
	9.4	Conic	al Emission and X-Wave Instability	252	
	9.5	Nonli	near X-Wave Expansion	255	
		9.5.1	Some Examples	255	
		9.5.2	Proof	256	
		9.5.3		257	
	9.6		rical Solutions for Nonlinear X-Waves	257	
	0.5	9.6.1	Bestiary of Solutions	259	
	9.7		ed X-Wave Theory	262	
		9.7.1 9.7.2	Fundamental X-Wave and Fundamental Soliton	264	
		9.1.2	Splitting and Replenishment in Kerr Media as a Higher-Order Soliton	264	
	9.8	Brief	Review of Experiments	265	
	7.0	9.8.1	Angular Dispersion	265	
		9.8.2	Nonlinear X-Waves in Quadratic Media	265	
		9.8.3	X-Waves in Self-Focusing of Ultrashort Pulses in		
			Kerr Media	266	
	9.9	Concl	usions	266	
	Refe	erences		267	
10	Diff	raction	n-Free Subwavelength-Beam Optics on a		
	Nanometer Scale				
	Sergei V. Kukhlevsky				
	10.1 Introduction			273	
	10.2	Natura	al Spatial and Temporal Broadening of Light Waves	275	
	10.3	Diffra	ction-Free Optics in the Overwavelength Domain	281	

x CONTENTS

	10.4 Diffraction-Free Subwavelength-Beam Optics on a			
	Nanometer Scale	286		
	10.5 Conclusions	292		
	Appendix	292		
	References	293		
11	Self-Reconstruction of Pulsed Optical X-Waves Ruediger Grunwald, Uwe Neumann, Uwe Griebner, Günter Steinmeyer, Gero Stibenz, Martin Bock, and Volker Kebbel	299		
	11.1 Introduction	299		
	11.2 Small-Angle Bessel-Like Waves and X-Pulses	300		
	11.3 Self-Reconstruction of Pulsed Bessel-Like X-Waves	303		
	11.4 Nondiffracting Images	306		
	11.5 Self-Reconstruction of Truncated Ultrabroadband			
	Bessel-Gauss Beams	307		
	11.6 Conclusions	310		
	References	311		
12	Localization and Wannier Wave Packets in Photonic Crystals			
	Without Defects Stefano Longhi and Davide Janner	315		
	12.1 Introduction	315		
	12.2 Diffraction and Localization of Monochromatic Waves in			
	Photonic Crystals	317		
	12.2.1 Basic Equations	317		
	12.2.2 Localized Waves	319		
	12.3 Spatiotemporal Wave Localization in Photonic Crystals	324		
	12.3.1 Wannier Function Technique	325		
	12.3.2 Undistorted Propagating Waves in Two- and Three-Dimensional Photonic Crystals	329		
	12.4 Conclusions	334		
	References	335		
13	Spatially Localized Vortex Structures Zdeněk Bouchal, Radek Čelechovský, and Grover A. Swartzlander, Jr.			
	13.1 Introduction	339		
	13.2 Single and Composite Optical Vortices	342		
	13.3 Basic Concept of Nondiffracting Beams	346		
	13.4 Energetics of Nondiffracting Vortex Beams	350		
	13.5 Vortex Arrays and Mixed Vortex Fields	352		