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Preface

The last twenty years or so have seen a flurry of activity in the synthesis of new
polymer systems. This interest has developed largely as a result of the
increased need for advanced materials.

Despite the emergence of a number of outstanding polymers, it is the
polyimides that have captured the imagination of scientists and engineers alike
as materials that offer outstanding promise for the high technology applic-
ations of the future.

The reputation of the polyimide has been established on the bases of
outstanding thermal stability, excellent mechanical properties and the ability
to be fabricated into useful articles.

Polyimides offer a versatility unparalleled in most other classes of
macromolecules. Polymers can be prepared from a variety of starting
materials, by a variety of synthetic routes. They can be tailor-made to suit
specific applications. By judicious choice of starting materials, polymers can
be made that offer variations in such properties as glass transition tempera-
ture, oxidative stability, toughness, adhesion, and permeability.

It is this versatility that has led to the use of polyimides in a wide variety of
applications. The electronics industry makes extensive use of polyimide films
in, for example, semiconductor applications. The leading polymer matrices for
high temperature advanced composites are polyimides. High temperature
adhesive systems for the bonding of metals or composites are often based on
polyimides. In addition, polyimides are now finding use as fibres, foams,
sealents and even membranes for the low energy separation of industrial gases.

Despite the widespread interest in polyimides and the amount of published
papers, reviews and books, there are very few comprehensive reference works
on the subject.

In this book, the chemistry and applications of this versatile class of
polymers will be brought together for the first time. A detailed description of
the main types of polyimide, their chemistry, production, properties and their
most important end uses will be given. The book is written for materials
scientists, polymer technologists and engineers, especially those in the
electronics, aerospace, automotive and chemical industries. It is authored by
an international group of scientists and technologists from the USA, Europe
and Japan.
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1 Synthesis of aromatic polyimides from
dianhydrides and diamines

F.W. HARRIS

1.1 Introduction

Although the first synthesis of an aromatic polyimide was carried out in 1908
[1] it was not until the late 1950s that high molecular weight polymers were
prepared [2-4]. Perhaps more surprising is that even today the most common
method for their synthesis, i.e. the treatment of an aromatic diamine with an
aromatic tetracarboxylic acid dianhydride, is still not completely understood.
This is because the course of the reaction, which is carried out by both two-
and one-step methods, is dramatically affected by the reaction conditions [5].
Even the mode of monomer addition can affect the molecular weight of the
polymer obtained [6,7]. In the following paragraphs the complexities of the
sequence of events leading to the polyimide structure will be thoroughly
examined.

1.2 Two-step method for polyimide synthesis

In the classic method of polyimide synthesis, a tetracarboxylic acid dianhy-
dride is added to a solution of diamine in a polar aprotic solvent, such as N,N-
dimethylformamide (DMF), N,N-dimethylacetamide (DMAC), and N-
methylpyrrolidone (NMP) at 15 to 75°C [2-11]. The generated poly(amic
acid) is then cyclodehydrated to the corresponding polyimide by extended
heating at elevated temperatures or by treatment with chemical dehydrating
agents (Scheme 1.1). Since the polyimide is often insoluble and infusible, the
polymer is usually processed in the form of the poly(amic acid), which is
thermally imidised in place.

1.2.1 Mechanism of poly(amic acid) formation

A mechanism that accurately describes the formation of the polyimide
precursor is shown in Scheme 1.2.
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The first important point to note is that the reactants and the product are in
equilibrium, i.e. the propagation reaction is reversible [12,13]. The forward
reaction is thought to start with the formation of a charge transfer complex
between the dianhydride and the diamine [9, 14,15]. Propagation occurs
immediately thereafter via nucleophilic substitution at one of the anhydrlde s
carbonyl carbon atoms. Thus, the amine nucleophile attacks the sp? carbon
and displaces the adjacent carboxylate moiety. This results in a very unusual
situation where the condensation by-product, the carboxyl group, is chemi-
cally attached to the product. Hence, it can not be physically removed in order
to drive the reaction to completion. However, it can, in effect, be chemically
removed. Since the first step in the reverse reaction involves a transfer of the
carboxyl proton to the adjacent carboxamide group, any reagent that hinders
this process can decrease the rate of the reverse reaction and effectively pull the
equilibrium to the right. This is the case with polar aprotic solvents, which
form strongly hydrogen-bonded complexes with the free carboxyl groups. The
equilibrium constants for most acylation reactions in these solvents at ambient
temperature are greater than 10°1/mol [12]. Hence, high molecular weight
poly(amic acids) can be obtained from many combinations of aromatic
dianhydrides and diamines.

This is not to imply that the equilibrium constants are independent of the
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monomers’ structures. Considerable differences appear when polymeris-
ations are carried out in ether or hydrocarbon solvents [12,16]. In such
solvents, the equilibrium constant strongly depends upon the amine’s basicity
and the acidity or electrophilicity of the dianhydride. In polar aprotic solvents,
although very unreactive diamines (pK, < 4) and dianhydrides can lower the
equilibrium constant, the primary result of differences in monomer structure is
differences in the rate at which the polymerisation occurs.

Another important observation to be made concerning the equilibrium is
that the forward reaction is exothermic at ambient temperature [12]. The
magnitude of the heat of reaction depends on the solvent’s basicity. Thus, the
equilibrium is shifted to the left and the product’s molecular weight is lowered
when the reaction temperature is increased [17]. Conversely, decreasing the
reaction temperature results in a shift of equilibrium to the right and an
increase in the molecular weight. In basic aprotic solvents, however, the
equilibrium already lies so far to the right at ambient temperature that the
increase upon cooling is usually not detectable.

Some exceptions to the above generalisations are found with very
unreactive monomers that do not react exothermically at ambient tempera-
ture. In these cases, the molecular weight of the poly(amic acid) increases as the
temperature is increased. Although the effect is often obscured by the onset of
imidisation, the polyimide produced usually has a higher molecular weight
than that of its precursor [18-20].

Still another feature of the equilibrium that should be pointed out is that the
forward reaction is bimolecular and the reverse is unimolecular. Thus,
increases in the monomers’ concentrations should shift the equilibrium to the
right and vice versa. Although the molecular weight of poly(amic acids) has
been found to be dependent upon monomer concentration [7], it is not clear
how much of this effect can be attributed to equilibrium considerations,
especially as the equilibrium constant is so large in polar aprotic solvents.
This equilibrium effect, however, undoubtedly plays a role in the rapid
decrease in molecular weight experienced by poly(amic acids) in very dilute
solutions [10].

Equilibrium effects also help to explain the early observation that the
addition of excess dianhydride or diamine to a poly(amic acid) solution results
in a dramatic decrease in its viscosity [6]. Since the polymer is in equilibrium
with the dianhydride and the diamine, the addition of an excess of either
monomer results in an effective offset in stoichiometry that limits the
molecular weight of the polymer.

Since the amine can attack either of the anhydride carbonyl groups, chain
propagation results in the generation of isomeric repeat units. For example, in
polymerisations involving pyromellitic dianhydride (PMDA) propagation
results in both meta- and para-catenation. In the case of bridged dianhydrides,
three different repeat unit isomers are formed during polymerisation. The
situation can be simplified by considering only one half of the repeat unit
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structure. Thus, propagation can occur at the carbonyl carbon in the meta- or
para-position to the linking unit (Scheme 1.3).

1
~—NH-C C-NH— —NH-C CO,H
Hozc:@:cozl-l or HOzc:@:ﬁ-NHM

(o)

Q
~—NH-C C-NH— —NH-C CO,H
Hozc:@/ \@:co % Ho c:@/ \@:c NH—"
o
HO ,C ~ X~~~ COLH
vescascsywl
o 0

Scheme 1.3

13C NMR has been used [21] to determine the percentage of meta- and para-
isomers in a series of poly(amic acids) prepared from various dianhydrides and
p-phenylenediamine and benzidine (Table 1.1). The polymers compositions
were found to be independent of the diamine used. Quantum chemical
calculations did show that the isomeric ratios qualitatively correlate with the
frontier electron densities f of the anhydrides carbonyl carbons.

The results of this study can be rationalised in the following manner. The
nucleophilic amine prefers to attack the most electron-deficient carbonyl
carbon in the anhydride. This inherent preference is not changed by changes in
the nucleophilicity of the amine. The major factor that determines the position

Table 1.1 Isomeric composition of poly(amic acids)i?!!

Meta-isomer?* Para-isomer
Dianhydride (%) (%)
PMDA 60 40
ODPA® 63 37
BPDA® 50 50
BTDA®¢ 45 55

Compositions were determined by !*C-NMR analysis.
4,4'-Oxydiphthalic anhydride.
3,3',4,4'-Biphenyltetracarboxylic dianhydride.
3,3',4,4'-Benzophenonetetracarboxylic dianhydride.

aoc o
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of attack is the relative difference in electrophilicities between the two carbonyl
atoms. Strongly electron-withdrawing groups located in ortho- and para-
positions to the carbonyl carbon will, therefore, increase its susceptibility for
attack; electron-donating groups in these positions will decrease it.

Meta-catenation is slightly preferred in PMDA polymers because the
incoming amine chooses between a carbonyl atom activated by an acid group
and a carbonyl atom activated by a carboxamide group. (Acid groups are
slightly stronger electron-withdrawing groups [22].) The preferred position of
attack in bridged dianhydrides is determined by the electron-withdrawing
ability of the bridge group. The stronger its electron-withdrawing abilities, the
higher is the percentage of para-catenation.

1.2.2  Kinetics of poly(amic acid) formation

Although the kinetics of the propagation reaction have been studied
extensively during the past 25 years, there is still some confusion over what
kinetic law is followed. Several workers have reported that the reactions of
various dianhydrides with aromatic diamines follow irreversible, second-
order kinetics [23-26]. However, other workers claim that reversible, -
autocatalytic kinetics are followed [16, 27]. For example, a relatively recent
study clearly showed that autocatalytic, reversible kinetics were followed in
the formation of a poly(amic acid) in tetrahydrofuran (THF) [16]. It was also
found that added carboxylic acid effectively catalysed the reaction, but
produced polymers with low molecular weights.

Much of the confusion undoubtedly stems from the effect of the polymeris-
ation solvent. Polymerisation carried out in amide solvents are apparently not
subject to autocatalytic effects [28]. These basic solvents form such tight
hydrogen-bonded complexes with the amic acid carboxyl groups that they are
not free to catalyse further reactions. Interestingly, simple carboxylic acids,
such as benzoic acid, do catalyse acylation reactions in amide solvents. These
somewhat contradictory results suggest that the carboxamide moiety actively
participates in complex formation between the o-carboxycarboxamide groups
and the solvent. Since less basic solvents, such as THF, do not tie up the amic
acid carboxyl group, they are free to function as a catalyst and participate in
the reverse reaction.

The actual rate of polymerisation is also strongly dependent on the solvent.
The rate generally increases as the solvent becomes more polar and more basic
[12,23]. For example, the results of one model compound study showed that
the rate of acylation increases with solvent in the order THF < acetonitrile
<DMAC <m-cresol [28]. The large rate constant obtained in m-cresol
suggests that the solvent also functions as an acid catalyst.

Itshould be pointed out that the majority of rate constants that appearinthe
literature have been determined in amide solvents using the assumptions that
the propagation reaction follows second-order kinetics and is not reversible.
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Although the latter assumption is not technically correct, it is a close
approximation of the situation.

As was mentioned earlier, propagation proceeds via a nucleophilic substi-
tution reaction at one of the carbonyl carbons of the anhydride. The more
electrophilic the dianhydride, the more susceptible it is to nucleophilic attack.
An excellent measure of an anhydride’s electron acceptor properties is
provided by its electron affinity (E,), which can be obtained from polaro-
graphic reduction data [15]. In fact, direct monotonic relationships between
acylation rate constants and the values of E, have been found to exist. A
quantum-chemical basis for these relationships has been found by molecular
orbital calculations [29]. Thus, the energies of the lowest unoccupied
molecular orbital of a series of dianhydrides have been shown to be directly
proportional to the experimental values of E, and the logarithm of the rate
constant. (The acylation reaction is presumed to involve the formation of a
chemical bond through the interaction of the highest occupied molecular
orbital of the diamine, which contains an unshared electron pair, and the
lowest unoccupied molecular orbital of the anhydride.)

As shown in Table 1.2, PMDA displays the highest E, of the commercially
available dianhydrides. The strong electron-withdrawing anhydride moieties
in this molecule activate each other towards nucleophilic attack. Even after

Table 1.2 Commercially available dianhydrides

Dianhydride Abbreviation E,(eV)'? Sources?
Q 0 PMDA 1.90 Allco Chemical
Corporation
d s
;@;l\:jo Pittsburg, KS
o R
0 o DSDA 1.57 New Japan
s Chemical Co.,
0 0 Kyoto, Japan
o N BTDA 1.55 Allco Chemical
a 9 Corporation,

Pittsburg, KS

CFy 0 6FDA NA Hoechst
é o} Celanese,
P@ Coventry, RI
CFy
[e]
0 0 BPDA 1.38 Ube Industries,
Ltd., Tokyo,
(o] [o]
Japan
0 (o)
o 0 ODPA 1.30 Occidental
° Chemical Corp.,
O>/ o Grand Island,
& S New York

a All the dianhydrides may also be purchased from Chriskev Company, Leawood, Kansas.
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one side of the molecule has undergone reaction, the generated carboxyl and
carboxamide groups strongly activate the second anhydride group because of
their own electron-withdrawing abilities. The E, values of the bridged
monomers are strongly dependent upon the electron withdrawing ability of
their bridge group [15]. These values and the corresponding rate constants
decrease as the ability of the bridge group to withdraw electrons decreases.

Attempts to correlate the reactivity of aromatic diamines with their
ionisation potential (I), i.e. their electron-donating ability, have been less
successful [5]. Although the rate constants for the reactions of diamines with a
given dianhydride generally decrease as the diamines ionisation potential
decreases, no quantitative relationships have been established [30]. Only
qualitative correlations have been found between the energies of the highest
occupied molecular orbitals of the diamines, the experimental values of I and
the logarithm of the rate constant. Interestingly, qualitative correlations have
also been made between the calculated charges on the diamine nitrogen atoms
and these parameters [30]. This indicates that there are substantial electro-
static interactions between the reactive sites during the propagation reaction.

Considerable success has been achieved in quantitatively correlating diamine
basicity with reactivity. Well-defined linear relationships exist between the
pK, values of diamines and the logarithm of their acylation rate constants
[25,26]. As shown in Table 1.3, the rate constants increase as the pkK,
increases. In bridged diamines with the general formula H,N—C¢H, X—
C¢H,—NH,, the values of pK, and acylation rate constant decrease as the
electron-withdrawing ability of the bridge group increases. Kinetic studies
have also shown that structural changes in the diamine affect the reaction rate
more significantly than changes in the dianhydride [30].

1.2.3  Effect of reaction conditions on the preparation of poly(amic acids)

Early workers in the field of polyimide chemistry found that higher molecular
weight poly(amic acids) could be produced by using higher concentrations of
monomers [7]. It was also discovered that the molecular weight of the
products was influenced by the order and mode of monomer addition, with the
highest molecular weights being obtained when solid dianhydrides were added
to solutions of diamines [6,7]. In fact, a slight stoichiometric excess of
dianhydride was used to enhance the molecular weight. Temperature was also
found to be critical, with the best results being obtained when polymerisations
were run between — 20 and 70°C [6, 10]. It is important to note that these
early studies used dilute solution viscosity measurements alone as a means of
assessing molecular weight. Thus, the molecular weight average that was being
followed was the viscosity-average molecular weight, M,, which is very close
to the weight-average molecular weight, M, [31]. Changes in M,, produce
much larger changes in intrinsic viscosity than do changes in the
number-average molecular weight M,,.



