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Preface to second edition

Since the publication of the first edition, research in and applications of
numerical analysis have expanded rapidly. The past few years have witnessed
the maturation of numerical fluid mechanics and finite element techniques.
Numerical fluid mechanics is addressed in substance in this second edition.
I have also added material in several other areas of promise, including hop-
scotch and other explicit-implicit methods, Monte Carlo techniques, lines,
the fast Fourier transform, and fractional steps methods. A new sixth
chapter introduces the general concepts of weighted residuals, with emphasis
on orthogonal collocation and the Bubnov-Galerkin method. In turn, the
. latter procedure is used to introduce the finite element concepts.

The spirit of the first edition was to be as self-contained as possible, to
present many applications illustrating the theory, and to supply a substantial
number of recent references to supplement the text material. This spirit has
been retained—there are 38 more problems and 138 additional references.
Also, a substantial number of additional applications have been included
and references to others appended.

I wish to extend my special thanks to Ms. Mildred Buckalew for the
preparation of an outstanding manuscript on the typewriter.

Georgia Institute of Technology



Preface to fiist edition

That part of numerical analysis which has been most changed by the ongoing
revolution in numerical methods is probably the solution of partial differential
equations. The equations from the technological world are often very com-
plicated. Usually, they have variable coefficients, nonlinearities, *irregular
boundaries, and occur in coupled systems of differing types (say, parabolic
and hyperbolic). The ‘curse of dimensionality’ is ever present — problems
with two or three space variables, and time, are within our computational
grasp. )

Early development of calculational algorithms was based more upon the
extension of methods for hand computation, empiricism, and intuition than
on mathematical analyses. With increasing education and the subsequent
development of the professional numerical analyst, the pattern is changing.
New, useful methods are evolving which come closer to full utilization of the
inherent powers of high-speed, large-memory computing machines. Many sig-
nificant and powerful methods await discovery both for problems which are
computable with existing techniques and those which are not.

Unfortunately, as in other portions of mathematics, the abstract and the
applications have tended to diverge. A new field of pure mathematics has
been generated and while it has produced some results of value to users, the
complexities of real problems have yet to be significantly covered by the
presently available theorems. Nevertheless, guidelines are now available for
the person wishing to obtain the numerical solution to a practical
problem.

The present volume constitutes an attempt to introduce to upper-level
engineering and science undergraduate and graduate students the concepts of
modern numerical analyses as they apply to partial differential equations. The
book, while sprinkled liberally with practical problems and their solutions,
also strives to point out the pitfalls - e.g., overstability, consistency require-
ments, and the danger of extrapolation to nonlinear problems methods which
have proven useful on linear problems. The mathematics is by no means
ignored, but its development to a keen-edge is not the major goal of this
work.

The diligent student will find 248 problems of varying difficulty to test his
mettle. Additionally, over 400 references provide a guide to the research and
practical problems of today. With this text as a bridge, the applied student
should find the professional numerical analysis journals more understand-
able.

I wish to extend special thanks to Mrs. Gary Strong and Mrs. Steven



xiv PREFACE TO FIRST EDITION

Dukeshier for the typing of a difficult manuscript and Mr. Jasbir Arora for
preparation of the ink drawings. Lastly, the excellent cooperation and patience

of Dr. Alan Jeffrey and my publishers have made the efforts of the past two
years bearable.
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1

Fundamentals

1-0 Introduction

Numerical calculation is commonplace toda;/ in fields where it was virtually
unknown before 1950. The high-speed computing machine has made possible
the solution of scientific and engineering problems of great complexity. This
capability has, in turn, stimulated research in numerical analysis since effective
utilization of such devices depends-strongly upon the continual advance of
research in relevant areas of mathematical analysis. One measure of the
growth is the upsurge of books devoted to the subject in the years after 1953.
A second measure is the development, during the same period, of at least six
research journals whose primary concern is numerical analysis. The major
research journals are SIAM Journal of Numerical Analysis, Mathematics of
Computation, Numerische Mathematik, Journal of Computational Physics,
Computer Journal, and ACM Journal.}

Finite difference approximations for derivatives were already in use by
Euler [1]} in 1768. The simplest finite difference procedure for dealing with
the problem dx/dt = f(x, t), x(0) = a is obtained by replacing (dx/dt), -, with
the crude approximation (x, — x,_,)/At. This leads to the recurrence relation
Xo = @, Xy = Xp_1 + Atf(xn_1, t,-1) for n > 0. This procedure is known as
Euler’s method. Thus we see that for one-dimensional systems the finite
difference approach has been deeply ingrained in computational algorithms
for quite some time.

For two-dimensional systems the first computational application of finite
difference methods was probably carried out by Runge [2] in 1908. He studied
the numerical solution of the Poisson equation u,, + %,, = constant. Atap-
proximately the same time Richardson [3], in England, was carrying on similar
research. His 1910 paper was the earliest work on the application of iterative
methods to the solution of continuous equilibrium problems by finite differ-
ences. In 1918 Liebmann [4], in considering the finite difference approximation
to Laplace’s equation, suggested an improved method of iteration. Today the
name of Liebmann is associated with any method of iteration by single steps
in which a fixed calculation sequence is followed.

The study of errors in finite difference calculations is still an area of prime
research interest. Early mathematical convergence proofs wove carried out by
LeRoux [5], Phillips, and Wiener [6], and Courant, Friedrichs, and Lewy [7].

t SIAM is the common abbreviation for Society for Industrial and Applied Mathe-

matics. ACM is the abbreviation for the Association for Computing Machinery.
1 Numbers in brackets refer to the references at the end of each chapter.
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Some consider the celebrated 1928 paper of Courant, Friedrichs, and Lewy
as the birthdate of the modern theory of numerical methods for partial
differential equations.

The algebraic solution of finite difference approximations is best accom-
plished by some iteration procedure. Various schemes have been proposed to
accelerate the convergence of the iteration. A summary of those that were
available in 1950, and which are adaptable to automatic programming, is
given by Frankel [8]. Other methods require considerable judgment on the
part of the computer and are therefore better suited to hand computation.
Higgins [9] gives an extensive bibliography of such techniques. In the latter
category the method of relaxation has received the most complete treatment.
Relaxation was the most popular method in the decade of the thirties. Two
books by Southwell [10, 11] describe the process and detail many examples.
The successive over-relaxation method, extensively used on modern computers,
is an outgrowth of this highly successful hand computation procedure.

Let us now consider some of the early technical applications. The pioneer-
ing paper of Richardson [3] discussed the approximate solution by finite
differences of differential equations describing stresses in a masonry dam.
Equilibrium and eigenval ie problems were successfully handled. Binder [12]
and Schmidt [13] applied finite difference methods to obtain solutions of the
diffusion equation. The classical explicit recurrence relation

Upger =gy + (1 = 20u; + rug,,y 4 r = At/(Ax)?

for the diffusion equation u, = u,, was given by Schmidt [13] in 1924.

For any given continuous system there are a multiplicity of discrete models
which are usually comparable in terms of their relative truncation errors.
Early approximations were second order—that is, O(h%)t—and these still play
an important role today. Higher order procedures were promoted by Collatz
[14, 15] and Fox [16]. The relative economy of computation and accuracy of
second-order processes utilizing a small interval size, compared with higher
order procedures using larger interval sizes, has been discussed in the papers
of Southwell [17] and Fox [18].

It is quite possible to formulate a discrete model in an apparently natural
way which, upon computation, produces only garbage.} This is especially
true in propagation problems—that is, problems described by parabolic and
hyperbolic equations. An excellent historical example is provided by Richard-
son’s pioneering paper [3], in which his suggested method for the conduction
equation, describing the cooling of a rod, was found to be completely unstable
by O’Brien, Hyman, and Kaplan [19]. Another example concerns the trans-

t The notation O(A?) is read ‘(term of) order 4% and can be interpreted to mean ‘when
h is small enough the term behaves essentially like a constant times #%’. Later we make
this concept mathematically precise.

1 Misuse of computational algorithms has been described as GIGO—Garbage In
and Garbage Out.
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verse vibration of a beam. In 1936 Collatz [20] proposed a ‘natural’ finite
difference procedure for the beam equation u,; + #,... = 0, but fifteen years
later [21] the algorithm was found to be computationally unstable.

Nevertheless, the analyst usually strives to use methods dictated by the
problem under consideration—these we call natural methods. Thus, a natural
coordinate system may be toroidal (see Moon and Spencer [22]) instead of
cartesian. Certain classes of equations have natural numerical methods which
may be distinct from the finite difference methods. Typical of these are the
method of lines for propagation problems and the method of characteristics for
hyperbolic systems. Characteristics also provide a convenient way to classify
partial differential equations.

1-1 Classification of physical problems

The majority of the problems of physics and engineering fall naturally into one
of three physical categories: equilibrium problems, eigenvalue problems, and
propagation problems.

Differential equation L[¢] = f

Solution domain D

Fig. 1-1 Representation of the general equilibriuh problem

Equilibrium problems are problems of steady state in which the equilibrium
configuration ¢ in a domain D is to be determined by solving the differential

equation

Ligl = f (1-1)
within D, subject to certain boundary conditions

B¢] = & (1-2)

on the boundary of D. Very often, but not always, the integration domain D
is closed and bounded. In Fig. 1-1 we illustrate the general equilibrium prob-
lem. In mathematical terminology such problems are known as bcundary
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value problems. Typical physical examples include steady viscous flow, steady
temperature distributions, equilibrium stresses in elastic structures, and steady
voltage distributions. Despite the apparent diversity of the physics we shall
shortly see that the governing equations for equilibrium problems are elliptic.t

Eigenvalue problems may be thought of as extensions of equilibrium prob-
lems wherein critical values of certain parameters are to be determined in
addition to the corresponding steady-state configurations. Mathematically
the problem is to find one or more constants (), and the corresponding
functions (¢), such that the differential equation

Ll¢] = AM[4] (:-3)
is satisfied within D and the boundary conditions
Bi[¢] = AE[4] (1-4)

hold on the boundary of D. Typical physical examples include buckling and
stability of structures, resonance in electric circuits and acoustics, natural
frequency problems in vibrations, and so on. The operators L and M are of
elliptic type.

Propagation problems are initial value problems that have an unsteady state
or transient nature. One wishes to predict the subsequent behavior of a system
given the initial state. This is to be done by solving the differential equation

Ligl =1 (1-5)
within the domain D when the initial state is prescribed as

L[¢] = h, (1-6)
and subject to prescribed conditions

Bi[¢] = & (1-7)

on the (open) boundaries. The integration domain D is open. In Fig. 1-2 we
illustrate the general propagation problem. In mathematical parlance such
problems are known as initial boundary value problems.} Typical physical
examples include the propagation of pressure waves in a fluid, propagation of
stresses and displacements in elastic systems, propagation of heat, and the .
development of self-excited vibrations. The physical diversity obscures the
fact that the governing equations for propagation problems are parabolic or
hyperbolic.

The distinction between equilibrium and propagation problems was well

+ The original mathematical formulation of an equilibrium problem will generate an
elliptic equation or system. Later mathematical approximations may change the type.
A typical example is the boundary layer approximation of the equations of fluid mechanics.
Those elliptic equations are approximated by the parabolic equations of the boundary
layer. Yet the problem is still one of equilibrium.

1 Sometimes only the terminology initial value problem is utilized.
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stated by Richardson [23] when he described the first as jury problems and the
second as marching problems. In equilibrium problems the entire solution is
passed on by a jury requiring satisfaction of all the boundary conditions and
all the internal requirements. In propagation problems the solution marches
out from the initial state guided and modified in transit by the side boundary
conditions.

Differential equation L[¢] = f

Boundary conditions

Initial conditions I[¢] = A

Fig. 1-2 Representation of the general propagation problem

1-2 Classification of equations
The previous physical classification emphasized the distinctive features of
basically two classes of problems. These distinctions strongly suggest that the
governing equations are quite different in character. From this we infer that
the numerical methods for both problems must also have some basic differ-
ences. Classification of the equations is best accomplished by developing the
concept of characteristics.

Let the coefficients a,, a,, ..., fi, f; be functions of x, y, u, and v and con-
sider the simultaneous first-order quasilinear systemf

au, + b]_uy + C1Vy + d]_vv =fi
agux + by + covx + dov, = fo}
t A qrasilinear system of equations is one in which the highest order derivatives occur

linearly.
1 We shall often use the notation u, to represent du/dx.

- (1-8)
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This set of equations is sufficiently general to represent many of the problems
encountered in engineering where the mathematical model is second order.

Suppose that the solution for # and v is known from the initial state to some
curve It At any boundary point P of this curve, we know the continuously
differentiable values of # and v and the directional derivatives of ¥ and v in
directions below the curve (see Fig. 1-2).

We now seek the answer to the question: ‘Is the behavior of the solution
just above P uniquely determined by the information below and on the curve ?
Stated alternatively: ‘Are these data sufficient to determine the directional
derivatives at P in directions that lie above the curve I'?” By way of reducing
this question, suppose that 6 (an angle with the horizontal) specifies a direc-
tion along which o measures distance. If u, and u, are known at P, then the
directional derivative

ua},=uxcos()+u,,sin0=ux%+uy3—f: (1-9)

is also known, so we restate the question in the simpler form: ‘Under what
conditions are the derivatives u,, u,, v,, and v, uniquely determined at P by
values of # and v on I'?” At P we have four relations, Eqns (1-8) and

du =u,do = u,dx + u, dy

(1-10)
dv = v, do = v, dx + v, dy
whose matrix form is
a, b]_ C1 d] Uy fl
a, by cg d u
2 2 2 2 v _ fz (l-ll)

dx dyv 0 0[], du
0 0 dx dyllv, dv

With « and v known at P the coefficient functions a,, a,, . . ., f1, f2 are known.
With the direction of I known, dx and dy are known; and if  and v are known
along T, du and dv are also known. Thus, the four equations [Eqns (1-11)]
for the four partial derivatives have known coefficients. A unique solution for
Uy, Uy, Uy, and v, exists if the determinant of the 4 x 4 matrix in Eqns (1-11)
is not zero. If the determinant is not zero, then the directional derivatives
have the same value above and below TI'.
The exceptional case, when the determinant is zero, implies that a multi-

plicity of solutions are possible. Thus, the system of Eqns (1-11) does not
determine the partial derivatives uniquely. Consequently, discontinuities in

+ We restrict this discussion to a finite domain in which discontinuities do not occur.
Later developments consider the degeneration of smooth solutions into discontinuous
ones. Additional information is available in Jeffrey and Taniuti [24] and Ames [25].
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the partial derivatives may occur as we cross I'. Upon equating to zero the
determinant of the matrix in Eqns (1-11) we find the characteristic equation

(@rca — ax01)(dy)? — (a1dy — aqdy + bic; — bye,y) dxdy
+ (bidy — bod)(dx)? =0 (1-12)

which is a quadratic equation in dy/dx. If the curve I' (Fig. 1-2) at P has a
slope such that Eqn (1-12) is satisfied, then the derivatives u,, u,, v,, and v,
are not uniquely determined by the values of ¥ and v on I'. The directions
specified by Eqn (1-12) are called characteristic directions; they may be real
and distinct, real and identical, or not real according to whether the discrimi-
nant

(@1d; — agd; + bic; — bycy)® — dayc; — agey)(bid, — body) (1-13)

is positive, zero, or negative. This is also the criterion for classifying Eqns
(1-8) as hyperbolic, parabolic, or elliptic. They are hyperbolic if Eqn (1-13)
is positive—that is, has two real characteristic directions; parabolic if Eqn
(1-13) is zero; and elliptic if there are no real characteristic directions.

Next consider the quasilinear second-order equation

au,, + buyy, + cuy, = f (1-14)

where a, b, ¢, and f are functions of x, y, u, u,, and u,. The classification of
Eqn (1-14) can be examined by reduction to a system of first-order equationst
or by independent treatment. Taking the latter course we ask the conditions
under which a knowledge of u, u,, and u, on I (see Fig. 1-2) serve to deter-
mine u,,, 4,,,} and »,, uniquely so that Eqn (1-14) is satisfied. If these deriva-
tives exist we must have

du,) = tedx + u,, dy
(1-15)
d(u,) = u,, dx + u,, dy

+ Transformation of Eqn (1-14) into a system of first-order equations is not unique.
~ This ‘nonuniqueness’ is easily demonstrated. Substitutions (i) w = u,, v = u,, and
(ii) w = u,, v = u, + u, both reduce Eqn (1-14) to two first-order equations.

For (i) we find the system

aw, + bw, + cv, = f
w, — v, =0
and for (i) we have
aw, + (b —c)w, + cvo, = f
Wy — 0y — w, =0
Some forms may be more convenient than others during computation. An example of
this, from a paper by Swope and Ames [26], will be discussed in Chapter 4.

1 Throughout, unless otherwise specified, we shall assume that the continuity condi-
tion, under which u,, = u,,, is satisfied.
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Eqns (1-15), together with Eqn (1-14), has the matrix form

a b ¢ Uy f
dx dy 0 Uey | = | d(uy) (1-16)
0 dx dy) Luy, d(uy)

Thus the solution for Uy xs Uxy, and u,, exists, and it is unique unless the deter-
minant of the coefficient matrix vanishes, that is

a(dy)® — bdydx + c(dx)? = 0. (1-17)

Accordingly, the characteristic equation for the second-order quasilinear
equation is (1-17). Equation (1-14) is hyperbolic if b2 — 4ac > 0, parabolic if
b% — 4ac = 0, and elliptic if b2 — 4ac < 0. Since a, b, and c are functions of
X, y, 4, u,, and u,, an equation may change its type from region to region.

In the hyperbolic case there are two real characteristic curves. Since the
higher order derivatives are indeterminate along these curves they provide
paths for the propagation of discontinuities. Indeed, shock waves and other
disturbances de propagate into media along characteristics.

The characteristic directions for the linear wave equation

Uer — o?uy, = 0 (a constant) (1-18)
are @dy)? — «?(dx)? =0

or ytoax=8 (1-19)

These are obviously straight lines.

A more complicated example is furnished by the nozzle problem. The
governing equations of steady two-dimensional irrotational isentropic flow
of a gas are (see, for example, Shapiro [27]):

uu, + vu, + p=lp, =0
uv, + v, + p'p, =0

(pu)x + (pv), = 0 (1-20)
Ve —u, =0
p _ .

=Y T
pp constant, ds c
where » and v are velocity components, p is pressure, p is density, ¢ is the
velocity of sound, and v is the ratio of specific heats (for air y = 1.4).

By multiplying the first of Eqns (1-20) by pu, the second by pv, using
dp = c® dp, and adding the two resulting equations we find that Eqns (1-20)
are equivalent to the following pair of first-order equations for » and v,

u? — cAu, + (o, + (W, + @ — >, =0
W = My + (o, " = e, wan
—u, + v, =0



