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I PREFACE

Biomedical optics is a rapidly growing area of research. Although many universi-
ties have begun to offer courses on the topic, a textbook containing examples and
homework problems has not been available. The need to fill this void prompted
us to write this book.

This book is based on our lecture notes for a one-semester (45 lecture hours)
entry-level course, which we have taught since 1998. The contents are divided
into two major parts: (1) fundamentals of photon transport in biological tissue and
(2) optical imaging. In the first part (Chapters 1-7), we start with a brief introduc-
tion to biomedical optics and then cover single-scatterer theories, Monte Carlo
modeling of photon transport, convolution for broadbeam responses, radiative
transfer equation and diffusion theory, hybrid Monte Carlo method and diffusion
theory. and sensing of optical properties and spectroscopy. In the second part
(Chapters 8—13). we cover ballistic imaging, optical coherence tomography, dif-
fuse optical tomography. photoacoustic tomography, and ultrasound-modulated
optical tomography.

When the book is used as the textbook in a course, the instructor may request
a solution manual containing homework ‘solutions from the publisher. To ben-
efit from this text, students are expected to have a background in calculus
and differential equations. Experience in MATLAB® or C/C++ is also helpful.
Source codes and other information can be found at ftp://ftp.wiley.com/public/
sci_tech_med/biomedical optics.

Although our multilayered Monte Carlo model is in the public domain, we
have found that students are able to better grasp the concept of photon transport in
biological tissue when they implement simple semiinfinite versions of the model.
For this reason, we encourage the use of simulations whenever appropriate.

Because a great deal of material beyond our original lecture notes has been
added. two semesters are recommended to cover the complete textbook. Alterna-
tively. selected chapters can be covered in a one-semester course. In addition to
serving as a textbook, this book can also be used as a reference for professionals
and a supplement for trainees engaged in short courses in the field of biomedical
optics.

We are grateful to Mary Ann Dickson for editing the text and to Elizabeth
Smith for redrawing the figures. We appreciate Sancy Wu’'s close reading of

xiii



Xiv PREFACE

the manuscript. We are also thankful to the many students who contributed to
the homework solutions. Finally, we wish to thank our students Li Li, Manojit
Pramanik, and Sava Sakadzic for proofreading the book.

LIHONG V. WANG, PH.D.
Hsin-1 Wu, Pu.D.
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IR CHAPTER 1

Introduction

1.1. MOTIVATION FOR OPTICAL IMAGING

The most common medical imaging modalities include X-ray radiography, ultra-
sound imaging (ultrasonography), X-ray computed tomography (CT), and mag-
netic resonance imaging (MRI). The discovery of X rays in 1895, for which
Roentgen received the first Nobel Prize in Physics in 1901, marked the advent of
medical imaging. Ultrasonography, which is based on sonar, was introduced into
medicine in the 1940s after World War II. The invention of CT in the 1970s, for
which Cormack and Hounsfield received the Nobel Prize in Medicine in 1979,
initiated digital cross-sectional imaging (tomography). The invention of MRI,
also in the 1970s, for which Lauterbur and Mansfield received the Nobel Prize
in Medicine in 2003, enabled functional imaging with high spatial resolution.
Optical imaging, which is compared with the other modalities in Table 1.1, is
currently emerging as a promising new addition to medical imaging.
Reasons for optical imaging of biological tissue include

1. Optical photons provide nonionizing and safe radiation for medical appli-
cations.

]

Optical spectra—based on absorption, fluorescence, or Raman scatter-
ing—provide biochemical information because they are related to molec-
ular conformation.

3. Optical absorption, in particular, reveals angiogenesis and hyperme-
tabolism, both of which are hallmarks of cancer; the former is related
to the concentration of hemoglobin and the latter, to the oxygen satura-
tion of hemoglobin. Therefore, optical absorption provides contrast for
functional imaging.

4. Optical scattering spectra provide information about the size distribution

of optical scatterers, such as cell nuclei.

n

Optical polarization provides information about structurally anisotropic
tissue components, such as collagen and muscle fiber.

Biomedical Optics: Principles and Imaging, by Lihong V. Wang and Hsin-i Wu
Copyright © 2007 John Wiley & Sons. Inc.



2 INTRODUCTION

TABLE 1.1. Comparison of Various Medical Imaging Modalities

X-ray Optical
Characteristics Imaging Ultrasonography MRI Imaging
Soft-tissue contrast Poor Good Excellent Excellent
Spatial resolution Excellent Good Good Mixed*
Maximum imaging depth Excellent Good Excellent Good
Function None Good Excellent Excellent
Nonionizing radiation No Yes Yes Yes
Data acquisition Fast Fast Slow Fast
Cost Low Low High Low

“High in ballistic imaging (see Chapters 8—10) and photoacoustic tomography (see Chapter 12):
low in diffuse optical tomography (see Chapter 11).

6. Optical frequency shifts due to the optical Doppler effect provide infor-
mation about blood flow.

7. Optical properties of targeted contrast agents provide contrast for the
molecular imaging of biomarkers.

8. Optical properties or bioluminescence of products from gene expression
provide contrast for the molecular imaging of gene activities.

9. Optical spectroscopy permits simultaneous detection of multiple contrast
agents.

10. Optical transparency in the eye provides a unique opportunity for high-
resolution imaging of the retina.

1.2. GENERAL BEHAVIOR OF LIGHT IN BIOLOGICAL TISSUE

Most biological tissues are characterized by strong optical scattering and hence
are referred to as either scattering media or turbid media. By contrast, optical
absorption is weak in the 400—1350-nm spectral region. The mean free path
between photon scattering events is on the order of 0.1 mm, whereas the mean
absorption length (mean path length before photon absorption) can extend to
10-100 mm.

Photon propagation in biological tissue is illustrated in Figure 1.1. The light
source is spatially a pencil beam (an infinitely narrow collimated beam) and
temporally a Dirac delta pulse. The optical properties (see Appendix A) of the
tissue include the following: refractive index n = 1.37, absorption coefficient
He = 1.4 cm™ !, scattering coefficient i, = 350 cm~', and scattering anisotropy
g = 0.8. The mean free path equals 28 um, corresponding to a propagation time
of 0.13 ps. The transport mean free path equals 140 um, corresponding to a
propagation time of 0.64 ps. Note how widely the photons spread versus time in
relation to the two time constants mentioned above. This diffusion-like behavior
of light in biological tissue presents a key challenge for optical imaging. Various
techniques have been designed to meet this challenge.
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Figure 1.1. Snapshots of the simulated photon density distribution in a piece of biological
tissue projected along the y axis, which points out of the paper.

1.3. BASIC PHYSICS OF LIGHT-MATTER INTERACTION

Absorption of a photon can elevate an electron of a molecule from the ground
state to an excited state, which is termed excitation. Excitation can also be caused
by other mechanisms, which are either mechanical (frictional) or chemical in
nature. When an electron is raised to an excited state, there are several possi-
ble outcomes. The excited electron may relax to the ground state and give off
luminescence (another photon) or heat. If another photon is produced, the emis-
sion process is referred to as fluorescence or phosphorescence, depending on the
lifetime of the excited electron: otherwise, it is referred to as nonradiative relax-
ation. Lifetime is defined as the average time that an excited molecule spends in
the excited state before returning to the ground state. The ratio of the number of
photons emitted to the number of photons absorbed is referred to as the quantum
vield of fluorescence. If the excited molecule is near another molecule with a sim-
ilar electronic configuration, the energy may be transferred by excitation energy
transfer—the excited electron in one molecule drops to the ground state while
the energy is transferred to the neighboring molecule, raising an electron in that
molecule to an excited state with a longer lifetime. Another possible outcome is
photochemistry, in which an excited electron is actually transferred to another



