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Preface

When we noticed that the first edition of this book (published in 1984)
was being used either as a supplementary text or as the sole textbook in
introductory polymer courses, we decided it was time to bring out an
expanded second edition. All of the chapters contain general introductory
material and comprehensive literature citations designed to give newcom-
ers to the field an appreciation of the subject and how it fits into the
general context of polymer science. For pedagogical purposes, the con-
tents have been subdivided into two parts, “Physical States of Polymers”
and “Some Characterization Techniques”. A new chapter has been added
to each part: “The Mesomorphic State” (Samulski) covers the rapidly
developing subject of liquid-crystalline polymers; “Scattering Techniques”
(Wignall) emphasizes the potential of small-angle neutron scattering in
contemporary characterization of bulk polymers. The original five chap-
ters: “The Rubber Elastic State” (Mark), “The Glassy State and the Glass
Transition” (Eisenberg), “Viscoelasticity and Flow in Polymer Melts and
Concentrated Solutions” (Graessley), “The Crystalline State” (Mandelkern),
and “Molecular Spectroscopy” (Koenig), have been revised and updated.
This expanded edition should provide ample core material for a one-term
survey course at the graduate or advanced undergraduate level. Although
the chapters have been arranged in a sequence that may be readily adapted
to the classroom, each chapter is self-contained and may be used as an
introductory source for these seven topics.

JAMES E. MARK

University of Cincinnati
Cincinnati, OH 45221-0172
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Chapter 1

The Rubber Elastic State

James E. Mark

Department of Chemistry and the Polymer Research
Center, University of Cincinnati, Cincinnati, OH
45221-0172

Basic Concepts

The most useful way to begin an article on rubberlike elasticity is to define
it and then to discuss what types of materials can exhibit this very unusual
behavior. Accordingly, rubber elasticity may be defined operationally as
very large deformability with essentially complete recoverability. For a
material to exhibit this type of elasticity, three molecular requirements
must be met: (1) the material must consist of polymeric chains, (2) the
chains must have a high degree of flexibility, and (3) the chains must be
joined into a network structure (7/-3).

The first requirement arises from the fact that the molecules in a
rubber or elastomeric material must be able to alter dramatically their
arrangements and extensions in space in response to an imposed stress,
and only a long-chain molecule has the required very large number of
spatial arrangements of very different extensions. This versatility is illus-
trated in Figure 1 (3), which depicts a two-dimensional projection of a
random spatial arrangement of a relatively short polyethylene chain in
the amorphous state. The spatial configuration shown was computer-
generated, in as realistic a manner as possible. The correct bond lengths
and bond angles were used, as was the known preference for trans
rotational states about the skeletal bonds in any #-alkane molecule. A final
feature taken into account is the fact that rotational states are interdepen-
dent; what one rotational skeletal bond does, depends on what the adjoin-
ing skeletal bonds are doing (4). One important feature of this typical
configuration is the relatively high spatial extension of some parts of the
chain. This feature is due to the preference for the trans rotational states,
already mentioned, which are essentially planar zigzag and thus of high
extension. The second important feature is the fact that, despite these

2505-2/93,/0003$15.25/1
© 1993 American Chemical Society
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FIGURE 1. A two-dimensional projection of an n-alkane chain having 200
skeletal bonds (3). The end-to-end vector starts at the origin of the coordi-
nate system and ends at carbon atom number 200.

preferences, many sections of the chain are quite compact. Thus, the
overall chain extension (as measured by the end-to-end separation) is quite
small. For even such a short chain, the extension could be increased
approximately fourfold by simple rotations about skeletal bonds, without
any need for distortions of bond angles or increases in bond lengths.

The second requirement for rubberlike elasticity specifies that the
different spatial arrangements be accessible; that is, changes in these
arrangements should not be hindered by constraints that might result
from inherent chain rigidity, extensive chain crystallization, or the very
highly viscous nature of the glassy state (7, 2, 5).

The third requirement allows elastomeric recoverability. A network
structure is obtained by joining together or cross-linking pairs of seg-
ments, approximately one out of a hundred; the cross-linked segments
prevent stretched polymer chains from irreversibly sliding by one another.
In a network structure (Figure 2; 5), the cross-links may be either chemi-
cal bonds (as would occur in sulfur-vulcanized natural rubber) or physical
aggregates (for example, the small crystallites in a partially crystalline
polymer or the glassy domains in a multiphase block copolymer; 3).
Additional information on the cross-linking of chains is given later in
Preparation of Networks.
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FIGURE 2. Schematic sketch of a typical elastomeric network. (Reproduced
with permission from reference 5. Copyright 1988 John Wiley and Sons, Inc.)

Origin of Elastic Retractive Force

The molecular origin of the elastic force (f) exhibited by a deformed
elastomeric network can be elucidated through thermoelastic experiments,
which examine the temperature dependence of either the force at constant
length (L) or the length at constant force (7, 3). Consider a thin metal
strip stretched with a weight W to a point short of that giving permanent
deformation, as shown in Figure 3 (3). An increase in temperature (at
constant force) would increase the length of the stretched strip in what
would be considered the “usual” behavior. Exactly the opposite, a shrink-
age, is observed in the case of a stretched elastomer! For purpose of
comparison, the result observed for a gas at constant pressure is included
in the figure. Raising the gas temperature would, of course, cause an
increase in volume (V), as required by the ideal gas law.

The explanation for these observations is given in Figure 4 (3). The
primary effect of stretching the metal is the increase in energy (AE)
caused by changing the distance (d) of separation between the metal
atoms. The stretched strip retracts to its original dimension upon removal
of the force, because this retraction is associated with a decrease in
energy. Similarly, heating the strip at constant force causes the usual
expansion arising from increased oscillations about the minimum in the
asymmetric potential energy curve. For the elastomer, however, the major
effect of the deformation is the stretching out of the network chains, which
substantially reduces their entropy (/-3). Thus, the retractive force arises
primarily from the tendency of the system to increase its entropy toward
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FIGURE 3. Results of thermoelastic experiments carried out on a typical
metal, rubber, and gas (3).

ORIGINS OF ELASTICITY

1L Metal

3.Gas

deform

FIGURE 4. Sketches explaining the observations described in Figure 3 in
terms of the molecular origin of the elastic force or pressure (3).

the (maximum) value it had in the undeformed state. An increase in
temperature increases the chaotic molecular motions of the chains and
thus increases the tendency toward this more-random state. As a result,
the length decreases at constant force, or the force increases at constant
length. This behavior is strikingly similar to that of a compressed gas, in
which the extent of deformation is given by the reciprocal volume (1/V).
The pressure of the gas is also largely entropically derived, with an in-
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crease in deformation (i.e., increase in 1/V) also corresponding to a
decrease in entropy. Heating the gas increases the driving force toward
the state of maximum entropy (infinite volume or zero deformation). Thus,
increasing the temperature increases the volume at constant pressure or
increases the pressure at constant volume.

This surprising analogy between a gas and an elastomer (which is a
condensed phase) carries over into the expressions for the work of defor-
mation (dw). For a gas, dw is, of course, —pdV, in which p is pressure.
For an elastomer, however, this pressure—volume term is generally essen-
tially negligible. For example, network elongation is known to take place
at very nearly constant volume (/, 3). The corresponding work term (dw)
now becomes +fdL; the difference in sign is due to the fact that a positive
w corresponds to a decrease in the volume of a gas but to an increase in
the length of an elastomer. Adiabatically stretching an elastomer increases
its temperature in the same way that adiabatically compressing a gas (for
example, in a diesel engine) will increase its temperature. Similarly, an
elastomer cools on adiabatic retraction, just as a compressed gas cools in
the corresponding expansion. The basic point here is the fact that the
retractive force of an elastomer and the pressure of a gas are both
primarily entropically derived, and as a result, the thermodynamic and
molecular descriptions of these otherwise dissimilar systems are very
closely related.

Some Historical High Points

Experimental Approaches

The simplest of the thermoelastic experiments described earlier were first
carried out many years ago, by J. Gough, back in 1805 (7, 2, 5, 6). The
discovery of vulcanization (i.e., curing of rubber into network structures)
by C. Goodyear and N. Hayward in 1839 was important in this regard,
because it permitted the preparation of samples that could be investigated
in this regard with much greater reliability. Such more-quantitative exper-
iments were carried out by J. P. Joule, in 1859, in fact, only a few years
after entropy was introduced as a concept in thermodynamics in general!
Another important experimental finding relevant to the development of
these molecular ideas was the fact that deformations of rubberlike materi-
als, other than swelling, occurred essentially at constant volume as long as
crystallization was not induced (7). (In this sense, the deformation of an
elastomer differs from that of a gas.)

Theoretical Approaches

A molecular interpretation of the fact that rubberlike elasticity is primarily
entropic in origin had to await H. Staudinger’s demonstration in the 1920s
that polymers were covalently bonded molecules and not some type of
association complex best studied by the colloid chemists (7). In 1932, W.
Kuhn used this observed constancy in volume to point out that the
changes in entropy must therefore involve changes in orientation or
configuration of the network chains. These basic qualitative ideas are



