;gnmg L&F@@ i*case
@3}@@1 -Oriented
%ng

Object Engineering

Designing Large-Scale, Object-Oriented Systems

Gary C. Sullo

A Wiley—QED Publication

WILEY

JOHN WILEY & SONS, INC.
New York ¢ Chichester Brisbande * Toronto ¢ Singapore

Designations used by companies to distinguish their products are often
claimed as trademarks. In all instances where John Wiley & Sons, Inc.
is aware of a claim, the product names appear in initial capital or all cap-
ital letters. Readers, however, should contact the appropriate companies
for more complete information regarding trademarks and registration.

This text is printed on acid-free paper.
Copyright © 1994 by John Wiley & Sons, Inc.

All rights reserved. Published simultaneously in Canada.

This publication is designed to provide accurate and authoritative infor-
mation in regard to the subject matter covered. It is sold with the under-
standing that the publisher is not engaged in rendering legal, accounting,
or other professional service. If legal advice or other assistance is re-
quired, the services of a competent professional person should be sought.

Reproduction or translation of any part of this work beyond that permit-
ted by sections 107 or 108 of the 1976 United States Copyright Act with-
out the permission of the copyright owner is unlawful. Requests for
permission or further information should be addressed to the Permission
Department, John Wiley & Sons, Inc.

Library of Congress Cataloging-in-Publication Data:

Sullo, Gary, 1953-
Object engineering: designing large-scale, object-oriented
systems/Gary Sullo.
p. cm.
Includes index.
ISBN 0-471-62369-5
1. Object-oriented programming (Computer science)

2. System design. I. Title.
QAT76.64.583 1994
005.12—dc20 94-1968

CIP

Printed in the United States of America

10987654321

Object Engineering

Preface

As a software engineer on real-world projects, like many of you, it seems
that I am continually faced with learning new ways of looking at my craft
and new ways of applying my skills to build systems and to advise others
in doing the same. Structured design was good, and it helped to build bet-
ter systems (sometimes). Then information engineering was introduced,
and it was sometimes better for building other kinds of systems. A lot to
learn, but it seemed like this covered it all, and in many ways, it did.
What, then, is object-oriented design all about? An object is just another
way of looking at a component of a system, like the process modules in
structured design or the data entities in information engineering. This is
good news. It means that your prior knowledge is useful after all.

Object-oriented programs are said to be easy to use. Very easy. Why
then, must their design be so complicated? The answer, of course, is that
it doesn’t have to be. Surely, something as popular as object-oriented
design can be explained without requiring that we totally retrain our
professional work force. And that is the purpose of this book—to explain
object-oriented design in the context of the things that you already know
(which is how we all learn it, anyway) and, as a result, to help you to up-
grade your skills with the least amount of pain this time. This shouldn’t
be the only book that you read on object-oriented design, but it should be
one of them.

This book is for those professionals and students of computer science
who are familiar with software engineering methodologies and who have
been exposed to objects, object languages, and object tools, but who need

XX PREFACE

to have the smoke cleared away. This will include software engineers,
programmers, analysts, and systems integrators. The software engineers
and systems integrators who will benefit from reading this book are those
who are charged with designing, managing, or integrating large scale in-
dustrial strength systems using object-oriented technology. The pro-
grammers and analysts who will benefit are those charged with carrying
out those projects.

Object engineering doesn’t rely on any one particular technology, but
rather gives you the understanding of how that technology fits into your
project. If you are interested in keeping your skills up to date and need
to have all of the new terminology put into a more meaningful perspec-
tive, then this book is for you. It will :

¢ Define the terms used in object-oriented design in a clear and concise
manner, so as to bring them together in a meaningful way.

* Relate object-oriented design to concepts borrowed from conventional
design, which are more familiar to you anyway.

e Lay out an organized model and a corresponding methodology for
object-oriented design which is both comprehensive and yet flexible.

* Provide cross references to the many other object-oriented notations,
diagrams, and techniques commonly used in the industry.

Object engineering is a methodology for designing large-scale, object-
oriented systems. This book explains the methodology in a way that eases
your transition into the object-oriented world. The book builds on what
you already know about system development. Part I reviews the princi-
ples of conventional software design as the context for designing objects.
Part II then defines the specific components of an object-oriented design
within that context. Finally, Part III provides a layered model for devel-
oping that design. The book tells a building story from front to back, but
you can also skip around from topic to topic without any loss of continu-
ity. It is, therefore, both a training guide and a reference book.

By approaching the topic in this way, the book helps you to under-
stand that object-oriented design is an evolution, rather than a revolu-
tion, in software engineering. This is a unique approach to teaching
object-oriented design techniques, and yet, results in a model which is
still consistent with the many other diagram notations and design meth-
ods that you may encounter elsewhere. Whether you are using Booch,
Coad/Yourdon, or some other specific set of diagrams and techniques,
and whether you favor CORBA, IEEE, Microsoft, or some other set of ob-
ject standards, the principles of object engineering should help you to
move more quickly and to be more effective in the new world of object-
oriented design.

Gary C. Sullo

Object Engineering

Contents

Preface

1 Introduction

1.1 The Purpose of the Book
Making Sense of Objects

1.2 The Object-Oriented World
1.2.1 What Is Object Engineering?
A Methodology for Object-Oriented
Design
1.2.2 What Is Object-Oriented Design?
Looking at Data and Processes
1.2.3 When Do You Need Object Engineering?
Developing Client/Server Systems
1.2.4 What Is a Client/Server System?
Distributed Modules
Large-Scale Systems
1.2.5 What Is the Payoff?
Reusable Software Objects

1.3 Software Design as a Discipline
Large-Scale Software Design

14 The Object-Oriented Design Model
Object-Oriented Terminology

-

R R W W W WN NN [eI \V)

ot Ot

Vi CONTENTS

1.5 The Object-Engineering Methodology
Object-Oriented Methodology
PART I LARGE-SCALE SOFTWARE DESIGN
2 Software Engineering
2.1 The Software Engineering Model
2.1.1 The Concepts of Software Engineering
2.2 Development Approaches
2.2.1 What Is Life-Cycle Development?
Software-Engineering Principles
Conventional Models
A Framework for Development
2.2.2 Why Are Life-Cycle Phases Used?
The Transformation of Requirements
2.2.3 How Does This Apply to Objects?
A Similar Framework
Similarities in Approach
Similarities in Techniques
2.3 Design Techniques
2.3.1 What Is Process-Driven Design?
The Concept of Processes
Designing a Program around Processes
2.3.2 What Is Data-Driven Design?
The Concept of Entities
Designing a Program around Entities
2.3.3 What Is Object-Oriented Design?
The Concept of Objects)
Designing a Program around Objects
Using Processes and Entities
3 Conventional Design
3.1 Conventional Models

3.1.1

3.1.2

3.1.3

What Is the Process-Driven Approach?
The Concept of Process Requirements
What Is the Data-Driven Approach?
The Concept of Data Requirements
When Is Conventional Design Useful?
Process-Intensive Applications
Data-Intensive Applications

(2}

o 0o

10
10
10
13
14
15
15
16
16
17
17

18
18
18
19
20
20
21
22
22
26
26

29

29
29
29
30
30
32
32
32

3.2

3.3

CONTENTS

A Process-Driven Approach
3.2.1 How Do You Develop a
Process-Driven Design?

The Original Approach
The Revised Approach
Process Decomposition

3.2.2 How Do You Decompose Processes?
Identifying Process Functions
Allocating the Processes into Groups
Implementing the Process Groups

3.2.3 When Is an Object Design Process Driven?
The Concept of Encapsulated Objects
The Concept of Operation Decomposition

A Data-Driven Approach
3.3.1 How Do You Develop a
Data-Driven Design?
The Business Enterprise
Entity Analysis
3.3.2 How Do You Analyze Data Entities?
Identifying Data Entities
Allocating the Entities into Groups
Implementing the Entity Groups
3.3.3 When Is an Object Design Data Driven?
The Concept of Classified Object
The Concept of Attribute Analysis

4 Object-Oriented Design

4.1

4.2

4.3

Object Requirements
The Concept of Object Requirements

The Client/Server Model

4.2.1 What Is a Client/Server Domain?
The Concept of Client Objects
The Concept of Server Objects
The Concept of a Domain

4.2.2 What Are Reusable Components?
A Matter of Perspective
The Concept of Abstraction
The Concept of Inheritance
The Concept of Collaboration

Distributed Applications
4.3.1 What Is Context-Sensitive Referencing?

41

41
41
43
44
44
46
48
50
50
50

54

54
54

57
57
57
59
60
61
61
62
64
67

69
69

viii contents

4.3.2

4.3.3

The Concept of Polymorphism
The Concept of Visibility

Implied Function Calling

Implied Data Referencing

What Is Event-Driven Operation?
The Concept of an Event
Triggering Object Operations
Accessing Object Attributes
Programmed Events

User Events

When Is an Application Distributed?
Client/Server Applications

The Concept of Extensibility

5 Object Engineering

An Object-Oriented Model
Context-Sensitive Referencing

5.1

5.2

5.3

An Object-Oriented Approach

5.2.1

5.2.2

How Do You Develop an
Object-Oriented Design?
The Transformation of Requirements
Objects as Operations and Attributes
When is Object-Oriented
Design Recursive?
The Object-Engineering Approach
Reusing Classes in a Domain
Redesigning Objects in a Class

Object-Oriented Techniques

5.3.1

5.3.2

5.3.3

How Do You Identify
Object Requirements?
The Class Hierarchies of a Domain
Identifying Inheritance Hierarchies
Identifying Collaboration Hierarchies
How Do You Allocate
Object Requirements?
Objects Associated with Classes
Allocating Requirements by
Classification
Allocating Requirements by
Encapsulation
How Do You Implement Object
Requirements?
Individual Object Design

69
70
71
71
72
72
73
74
74

75

75
75
76

81

81
81

82

82
82
84

84
84
85
86

86
86
86
88
88

89
89

91
91

92
92

PART I1

Implementing Object Operations
Implementing Object Attributes

CONTENTS X

93
93

OBJECT-ORIENTED TERMINOLOGY 95

6 The Definition of an Object

6.1

6.2

6.3

Objects and Instances

6.1.1

6.1.2

6.1.3

6.1.4

What Is an Object?

A Standardized Representation
A Component of a System
Modularity and Reusability
Packaged Requirements
Operation Characteristics
Attribute Characteristics

What Do Operations Represent?
Process Requirements
Data-Flow Diagrams

What Do Attributes Represent?
Data Requirements

Entity Relationships

What Is an Instance of an Object?
An Array of Identical Objects
The State of an Object

Object Classification

6.2.1

6.2.2

What Is Object Classification?
Common Requirements

Separate Internal Designs

How Is Classification Used?
Similar to Entity Analysis

The Intersection of Requirements
Inheritance Characteristics

Object Encapsulation

6.3.1

6.3.2

What Is Object Encapsulation?
Subordinate Requirements
Well-Defined Interfaces

How Is Encapsulation Used?
Similar to Process Decomposition
The Union of Requirements
Collaboration Characteristics

7 The Definition of a Class

7.1

Classes and Instances

711

What Is a Class?

96

96

96

96

97

98
100
101
101
102
102
102
103
103
103
106
106
107

108
108
108
108
109
109
110
111

112
112
112
112
113
113
114
117

119

119
119

X CONTENTS

7.2

7.3

7.1.2

7.1.3

Objects Linked to Hierarchies

A Group of Related Objects
Abstract Classes of Objects
Concrete Classes of Objects

What Is an Instance of a Class?

A Composite Instance of an Object
What Is a Member of a Class?
Subclasses of an Abstract Class
Instances of a Concrete Class

Abstract Classes

7.2.1

7.2.2

What Is an Abstract Class?
The Result of Classification
A Catalog of Common Parts

How Are Abstract Classes Used?
Object-Oriented Representation
The Inheritance Hierarchy

Concrete Classes

7.3.1

7.3.2

What Is a Concrete Class?

The Result of Classification

The Result of Encapsulation
Modules of the Operational Design
How Are Concrete Classes Used?
Conventional Representation

The Collaboration Hierarchy

8 The Definition of Inheritance

8.1

8.2

The Inheritance Hierarchy

8.1.1

8.1.2

8.1.3

What Is Class Inheritance?

An Object-Oriented Hierarchy
Diagrammed Classification
Abstract-Class Interaction
Factoring and Prototyping
Single-Inheritance Hierarchies
What Is Multiple Inheritance?
Multiple-Inheritance Hierarchies
Metaclass Inheritance Hierarchies
What Does Inheritance Represent?
An Is-a-Kind-of Relationship

A Pattern of Common Objects
Class Categories in a Domain

Object Visibility

8.2.1

What Is Object Visibility?

119
119
122
123
123
123
124
124
124

124
124
124
125

127
127
127

128
128
128
128
129
131
131
132

134

134
134
134
135
136
137
138
138
138
140
141
141
142
144

145
145

8.3

8.2.2

Access to Characteristics
Public Characteristics
Private Characteristics
How Is Visibility Used?
The Scope of a Member

Object Types

8.3.1

8.3.2

What Is Object Typing?
Class Consistency
Data-Attribute Types
Process-Operation Types
How Is Typing Used?
Language Extensions
Strong and Weak Typing
Early and Late Binding

9 The Definition of Collaboration
The Collaboration Hierarchy

9.1

9.2

9.11

9.1.2

What Is Class Collaboration?

A Conventional Hierarchy
Diagrammed Encapsulation
Concrete Class Interaction

What Does Collaboration Represent?
A Makes-Use-of Relationship

A Pattern of Object Operation
Module Assemblies in a Domain
Schema Assemblies in a Domain

Object Requests

9.2.1

9.2.2

9.2.3

What Is a Collaboration Contract?
A Package of Requests

Interobject Relationship

What Is a Collaboration Request?
Interobject Communication

The Request Stimulus

The Request Response

How Are Requests Used?
Hierarchical Encapsulation
Lateral Encapsulation

10 The Definition of a Domain

10.1

Object Hierarchies
10.1.1 What Is a Domain?

CONTENTS XI

145
146
148
148
148

149
149
149
150
150
151
151
152
152

155

155
155
155
156
157
158
158
159
160
161

162
162
162
164
166
166
167
168
168
168
170

173

173
173

xii conrents

10.2

PART III

10.1.2

10.1.3

A Large-Scale Design

Organized Requirements
Inheritance and Collaboration
Classes and Objects

Operations and Attributes

What Is Class Aggregation?
Organization of a Large Domain
An Is-a-Part-of Relationship

How Are the Hierarchies Used?
Coding the Inheritance Hierarchy
Coding the Collaboration Hierarchy
Coding the Object Internal Designs
Operational Logic of the Program

The Application Program
10.2.1 How Are Operations Triggered?

Common Subroutine Inheritance

Local Subroutine Collaboration

The Concept of Concurrency
10.2.2 How Are Attributes Accessed?

Common Data Inheritance

Local Data Collaboration

The Concept of Persistence

173
174
175
176
176
178
178
178
179
179
181
181
182

182
182
182
183
184
186
186
187
188

OBJECT-ORIENTED METHODOLOGY 193

11 The Object-Engineering Model

11.1

11.2

11.3

The Model Composition
An Object-Oriented Approach

The Domain Model

11.2.1 What Is a Domain Model?
A Domain Perspective
The Inheritance Diagram
The Collaboration Diagram

11.2.2 How Do You Design a Domain?
Identify Objects in a Domain
The Domain Provides

Polymorphism

11.2.3 How Do You Use the Domain?
Inheritance Polymorphism
Collaboration Polymorphism

The Interface Model
11.3.1 What Is an Interface Model?

194

194
194

196
196
196
198
198
199
199

201
201
201
202

202
202

contents Xiii

A Class Perspective 202
The Class Descriptions 203
The Object Descriptions 203
The Request Descriptions 204
11.3.2 How Do You Design Classes? 205
Allocate Object Requirements 205
The Classes Provide Extensibility 206
11.3.3 How Do You Use the Classses? 207
Static Source Libraries 207
Dynamic Link Libraries 208
114 The Implementation Model 208
11.4.1 What Is an Implementation Model? 208
An Object Perspective 208
The Operation Descriptions 209
The Attribute Descriptions 210
11.4.2 How Do You Design Objects? 210
Implement Individual Objects 210
The Objects Provide Source Code 213
11.4.3 How Do You Use the Objects? 213
An Object’s Range Is Determined
by Its Type 213
An Object’s Scope Is Called
Its Visibility 214
An Object’s Extent Is Called
Its Persistence 214
Object Instances Depend on
Concurrency 215
12 Design at the Domain Layer 217
12.1 Identifying Objects in a Domain 217
12.1.1 What Does a Design Represent? 217
The Domain Model 217
12.1.2 How Do You Start Your Design? 219
Designing a New Domain 219
Modifying an Existing Domain 220
12.2 The Inheritance Diagram 221
12.2.1 How Do You Determine Inheritance? 221
A Hierarchy of Common Requirements 221
The Classification of Requirements 223
Diagram the Inheritance Relationships 224
12.2.2 How Do You Diagram Inheritance? 225

Draw the Abstract Classes 225

XiV COnTENTS

12.3

Draw the Concrete Classes
Draw the Inheritance Lines
12.2.3 How Do You Organize the Diagrams?
Define Class Categories
Define Utility Classes
Define Metaclasses

The Collaboration Diagram

12.3.1 How Do You Determine Collaboration?
A Hierarchy of Operational Requirements

The Encapsulation of Requirements
Diagram the Collaboration
Relationships

12.3.2 How Do You Diagram Collaboration?
Draw the Concrete Classes
Draw the Collaboration Lines

12.3.3 How Do You Nest the Diagrams?
Draw Separate Hardware Diagrams
Draw Separate Software Diagrams

13 Design at the Class Layer

13.1

13.2

13.3

13.4

Allocating Object Requirements
The Interface Model

The Class Descriptions
13.2.1 How Do You Determine Classes?
The Interaction between Objects
Inheritance Defines Abstract Classes
Encapsulation Defines Collaboration
13.2.2 How Do You Define Classes?
Name the Classes
Identify the Superior Classes
Identify the Contracts
Signify the Concurrency
Signify the Persistence

The Object Descriptions
13.3.1 How Do You Determine Objects?
The Requirements of Objects
13.3.2 How Do You Define Objects?
Name the Objects
Identify the Operations
Identify the Attributes

The Request Descriptions

226
226
227
227
227
228

228
228
228
230

232
233
233
234
235
235
235

237

237
237

239
239
239
241
243
243
243
244
245
246
247

248
248
248
249
249
251
252

252

