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Preface

As a software engineer on real-world projects, like many of you, it seems
that I am continually faced with learning new ways of looking at my craft
and new ways of applying my skills to build systems and to advise others
in doing the same. Structured design was good, and it helped to build bet-
ter systems (sometimes). Then information engineering was introduced,
and it was sometimes better for building other kinds of systems. A lot to
learn, but it seemed like this covered it all, and in many ways, it did.
What, then, is object-oriented design all about? An object is just another
way of looking at a component of a system, like the process modules in
structured design or the data entities in information engineering. This is
good news. It means that your prior knowledge is useful after all.

Object-oriented programs are said to be easy to use. Very easy. Why
then, must their design be so complicated? The answer, of course, is that
it doesn’t have to be. Surely, something as popular as object-oriented
design can be explained without requiring that we totally retrain our
professional work force. And that is the purpose of this book—to explain
object-oriented design in the context of the things that you already know
(which is how we all learn it, anyway) and, as a result, to help you to up-
grade your skills with the least amount of pain this time. This shouldn’t
be the only book that you read on object-oriented design, but it should be
one of them.

This book is for those professionals and students of computer science
who are familiar with software engineering methodologies and who have
been exposed to objects, object languages, and object tools, but who need
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to have the smoke cleared away. This will include software engineers,
programmers, analysts, and systems integrators. The software engineers
and systems integrators who will benefit from reading this book are those
who are charged with designing, managing, or integrating large scale in-
dustrial strength systems using object-oriented technology. The pro-
grammers and analysts who will benefit are those charged with carrying
out those projects.

Object engineering doesn’t rely on any one particular technology, but
rather gives you the understanding of how that technology fits into your
project. If you are interested in keeping your skills up to date and need
to have all of the new terminology put into a more meaningful perspec-
tive, then this book is for you. It will :

¢ Define the terms used in object-oriented design in a clear and concise
manner, so as to bring them together in a meaningful way.

* Relate object-oriented design to concepts borrowed from conventional
design, which are more familiar to you anyway.

e Lay out an organized model and a corresponding methodology for
object-oriented design which is both comprehensive and yet flexible.

* Provide cross references to the many other object-oriented notations,
diagrams, and techniques commonly used in the industry.

Object engineering is a methodology for designing large-scale, object-
oriented systems. This book explains the methodology in a way that eases
your transition into the object-oriented world. The book builds on what
you already know about system development. Part I reviews the princi-
ples of conventional software design as the context for designing objects.
Part II then defines the specific components of an object-oriented design
within that context. Finally, Part III provides a layered model for devel-
oping that design. The book tells a building story from front to back, but
you can also skip around from topic to topic without any loss of continu-
ity. It is, therefore, both a training guide and a reference book.

By approaching the topic in this way, the book helps you to under-
stand that object-oriented design is an evolution, rather than a revolu-
tion, in software engineering. This is a unique approach to teaching
object-oriented design techniques, and yet, results in a model which is
still consistent with the many other diagram notations and design meth-
ods that you may encounter elsewhere. Whether you are using Booch,
Coad/Yourdon, or some other specific set of diagrams and techniques,
and whether you favor CORBA, IEEE, Microsoft, or some other set of ob-
ject standards, the principles of object engineering should help you to
move more quickly and to be more effective in the new world of object-
oriented design.

Gary C. Sullo
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