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Preface

In recent research on computer vision systems, attention has been playing a crucial role in
mediating bottom-up and top-down paths of information processing. In applied research,
the development of enabling technologies such as miniaturized mobile sensors, video
surveillance systems, and ambient intelligence systems involves the real-time analysis
of enormous quantities of data. Knowledge has to be applied about what needs to be
attended to, and when, and what to do in a meaningful sequence, in correspondence with
visual feedback. Methods on attention and control are mandatory to render computer
vision systems more robust.

The 2nd International Workshop on Attention and Performance in Computational
Vision (WAPCV 2004) was held in the Czech Technical University of Prague, Czech
Republic, as an associated workshop of the 8th European Conference on Computer Vi-
sion (ECCV 2004). The goal of this workshop was to provide an interdisciplinary forum
to communicate computational models of visual attention from various viewpoints, such
as from computer vision, psychology, robotics and neuroscience. The motivation for in-
terdisciplinarity was communication and inspiration beyond the individual community,
to focus discussion on computational modelling, to outline relevant objectives for per-
formance comparison, to explore promising application domains, and to discuss these
with reference to all related aspects of cognitive vision. The workshop was held as a
single-day, single-track event, consisting of high-quality podium and poster presenta-
tions. Invited talks were given by John K. Tsotsos about attention and feature binding
in biologically motivated computer vision and by Gustavo Deco about the context of
attention, memory and reward from the perspective of computational neuroscience.

The interdisciplinary program committee was composed of 21 internationally rec-
ognized researchers. We received 20 manuscripts responding to the workshop call for
papers; each of the papers was assigned at least 3 double-blind reviews; 16 of the papers
were accepted, as they corresponded to the requested quality standards and suited the
workshop topic; 10 were attributed to 4 thematic oral sessions, and 6 were appropriate
for representation as posters. The low rejection rate was commonly agreed to be due to
the high quality of the submitted papers.

WAPCYV 2004 was made possible by the support and engagement of the European
Research Network for Cognitive Computer Vision Systems (ECVision). We are very
thankful to David Vernon (Coordinator of ECVision) and Colette Maloney of the Euro-
pean Commission’s IST Program on Cognition for their financial and moral support. We
are grateful to Radim Sara, for the perfect local organization of the workshop and the
registration management. We also wish to thank Christin Seifert, for doing the difficult
task of assembling these proceedings.

October 2004 Lucas Paletta
John K. Tsotsos

Erich Rome

Glyn W. Humphreys
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Distributed Control of Attention

Ola Ramstréom and Henrik I Christensen

KTH, 10044 Stockholm, Sweden
{olar, hic}@nada.kth.se
http://www.nada.kth.se/cvap

Abstract. Detection of objects is in general a computationally demanding task.
To simplify the problem it is of interest to focus the attention to a set of regions of
interest. Indoor environments often have large homogeneous textured objects, such
as walls and furniture. In this paper we present a model which detects large homo-
geneous regions and uses this information to search for targets that are smaller in
size. Homogeneity is detected by a number of different descriptors and a coalition
technique is used to achieve robustness. Expectations about size allow for con-
straint object search. The presented model is evaluated in the context of a table
top scenario.

1 Introduction

In everyday life we have the impression to constantly perceive everything in the visual
field coherently and in great detail. One would normally expect to notice a gorilla walking
across the scene while watching a basketball game. However, we often fail to notice
salient events that are not expected [SMO1]. Indeed, only a small fraction of the visual
properties of a scene is attended and consciously perceived. Tsotsos’ complexity analysis
[Tso090] concludes that an attentional mechanism, that selects relevant visual features
and regions for higher level processes, is required to handle the vast amount of visual
information in a scene.

Garner [Gar74] found that similarity between objects is measured differently de-
pending on whether they differ in integral or separable features. From these findings
Treisman and Gelade [TG80] developed the "Feature-Integration Theory of Attention",
which states that integral features (denoted dimensions) are processed pre-attentively
across the visual field. Consequently a target will appear to pop-out if it is unique in
one dimension, such as a red target among green distractors. However, in conjunction
search, when the target is not uniquely described by any dimension, such as in search
for a red vertical target among red horizontal and green vertical distractors, we must
inspect each object in turn and hence the search time will be proportional to the number
of distractors. The theory furthermore predicts perceptual grouping to be processed pre-
attentively across the visual field. In the conjunction search example, a red vertical target
among red horizontal and green vertical distractors, the target can appear to pop-out if
e.g. all green objects are on the left side and the red are on the right side of a display.
The two groups need to be inspected in turn and the red vertical target will pop-out as
the only vertical object in the red group.

L. Paletta et al. (Eds.): WAPCV 2004, LNCS 3368, pp. 1-15, 2005.
(© Springer-Verlag Berlin Heidelberg 2005



2 O. Ramstréom and H.I. Christensen

Wolfe et. al. [WCF89] and others have found many cases where conjunction search
is much faster than the Feature-Integration Theory predicts, clearly different search
strategies are used depending on the scene-properties. Treisman and Sato revised the
theory [TS90] and confirmed the use of multiple strategies. One of these strategies is
to inhibit parts of the background; they found that search performance depends on the
homogeneity of the background. Apparently, the background context is processed to ease
the search for foreground objects. Moreover, many experiments have demonstrated that
we detect and implicitly learn unattended background context [KTG92] [DT96] [HK02].
This implicit memory affects our visual search performance but cannot be accessed by
our conscious mind. The Inattentional Amnesia Hypothesis [Wol99] explains this as:
Although we perceive and process the whole visual field, only attended locations are
consciously remembered.

Clearly, the processing of unattended background information plays an important
role in object detection.

The Coherence Theory [Ren00] defines the concept of volatile proto-objects that are
formed pre-attentively across the visual field. Proto-objects are described as "relatively
complex assemblies of fragments that correspond to localized structures in the world";
for example occluded objects are processed to estimated complete objects [ER92]. At-
tention is needed for proto-objects to become stable and for conscious processes to
access its information. When attention is released the proto-objects become volatile
again. This implies that there is little short-term memory apart from what is being at-
tended; this is consistent with the Inattentional Amnesia Hypothesis. Recent biological
findings [MvEOQ2] confirm pre-attentive processes corresponding to proto-objects in the
Coherence Theory.

We propose a model that is inspired by the Coherence Theory in that it models a
way for pre-attentive proto-objects to become stable when attended. The assemblies of
proto-objects are used as background context and their statistics are used to efficiently
search for objects that are defined only by their size.

1.1 Related Work

Most models of visual attention are space based [Mil93] [Wol94] [TSW*95] [IK00].
Some have modeled different aspects of object based visual attention: Li [Li00] has
developed a model for pre-attentive segmentation, Sun and Fisher for computing saliency
of hierarchical segments and the attentional shift among these [SFO3]. However, none of
the above models how pre-attentive segments become stable when attended as predicted
in the Coherence Theory.

2 Conceptual Model

A model has been developed which searches for target objects of an expected size. The
model is designed to be implemented on a distributed system and uses concepts from
game theory to minimize the need for inter-process communication.

The strategy is to use knowledge of the environment; e.g. in a living-room we might
expect large items with homogeneous surfaces such as table and cupboard. The large
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Table template ion

Negotiation Negotiation Negotiation
Segmentation Segmentation Segmentation
Color Intensity Orientation

Fig. 1. A raw image is processed by a set of distributed nodes resulting in a set of background
regions, which often corresponds to large objects

homogeneous regions provide layout and contextual information of the scene, which
can be used to guide the attention.

Figure 1 illustrates the system: A raw image from a camera is decomposed into a set
of feature maps at separate nodes, namely color, intensity, and orientation (see section 3).
A segmentation algorithm searches for large homogeneous regions locally at each node.
The resulting segments are sensitive to variations in the intrinsic parameters and the
camera pose, similar to proto objects discussed in [Ren00]. A negotiation scheme forms
coalitions of segments, which are more stable than the individual segments, similar to
the nexus discussed in [Ren00]. The coalitions of segments are formed by only sharing
real valued coalition values across the nodes and the final winning segmentation mask
(see section 4). The coalitions are denoted background regions and provide layout infor-
mation; a spatial template selects interesting background regions. The feature statistics
of each interesting background region is computed as local context and saliency can
thereafter be computed at each node with respect to the local context. Only a sparse set
of the saliency data need to be integrated across the nodes to achieve accurate object
detection (see section 5). As reference a center-surround saliency algorithm has been
developed (see section 6). The performance of the model is evaluated in section 7.
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3 Image Processing

The system processes a raw image into a set of feature maps which are subsequently
segmented into a set of homogeneous background regions. The raw image has 300 x
224 pixels in resolution using the YUV color space and the decomposed feature maps
have 75 x 56 pixels in resolution with different dimensionality. The format of the raw
images enable accurate processing of image features and the four times down sampling
of the feature maps reduce noise and thus improves extraction of homogeneous regions.

From experimental psychology [ER92]and biology [MVE02] it is clear that the visual
cortex performs segmentation preattentively using several separate visual features, Julez
denoted such features textons [Jul81]. Treisman [TG80] found that segments cannot be
formed by conjunctions of separate features. We will in this model restrict us to three
separate feature dimensions: Color, intensity, and orientation. These are suitable to the
environment we will use for evaluation. Note that it is not claimed that these are better
than any other feature dimensions nor that three separate dimensions is an optimal
number of dimensions. However, these feature dimensions allow us to compare the
results to [IKOO], where similar although not identical features are used.

Feature map identity is denoted d € {color, intensity, orientation} and the feature
maps are denoted f¢. In order to make output from the different feature maps comparable
when searching for homogeneous regions all feature maps are normalized to have zero
mean and unit variance.

4  Background Regions

The processing of feature maps is distributed over a set of processing nodes. Distributed
computing increases the processing power if the communication across nodes is limited.
It is of interest to enable distributed control where the nodes processes a majority of
information locally and only integrates a small subset of the full data set.

This is enabled using background regions, which are created using a game theoretic
negotiation scheme.

Knowing the context of a homogeneous background region we can efficiently search
for target objects, e.g. knowledge of the appearance of a tablecloth can efficiently guide
search for a cup on a table.

Having a rough estimate of the pose of a table relative to the camera, we need
a mechanism to find background regions, which might represent large homogeneous
objects and are stable with respect small variations in camera pose.

The mean-shift algorithm [CM99] is a fairly well established segmentation algorithm
based on local similarities. It has two intrinsic parameters: spatial scale s and feature
range . Small changes in these two intrinsic parameters or in the camera pose can result
in different segmentation results.

However, by using redundant mean-shift segments, corresponding to different pa-
rameters, we can increase the stability. We will in this section define a negotiation scheme
to form coalitions of similar mean-shift segments. Such coalitions are used to extract a
segmentation mask which is more stable than the ingoing members.
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4.1 Clustering of Redundant Mean-Shift Segments

The mean-shift segmentation depend on two intrinsic parameters (r, s). Different values
of these parameters might result in different segmentation result. Since they relate to
distances in the spatial and feature domain, such variations are related to variations in
pose and illumination. To increase the stability we compute the mean-shift segmentation
varying 7 € M, and s € M,. We will in this work restrict M, = {2,3,4} and M, =
{0.15,0.22,0.33}. Furthermore, since we are interested in background regions which
are much larger than the expected target size, we select only the N = 4 largest segments
and discard all segments smaller than 400 pixels (10% of the feature map size) for each
selection of (1, s) € M, x M,.

The mean-shift segmentation algorithm is processed locally at each node for each
(r,s) € M, x M. Let P4 represent the resulting set of mean-shift segments at node d;
hence the size of | P%| < N|M, x M,|. Each mean-shift segment p; € P is associated
with a segmentation mask S¢ and a histogram of the feature values inside the segmen-
tation mask h?. The similarity between two mean-shift segments p; and pj is defined as
the normalized intersection of their segmentation masks and histograms:

S3nsd  Hfnbg

it e~ '
im(i,3,4) = T 159 Thd 1)

ey

The second factor is fairly standard in histogram matching, the first factor borrows
the same normalization technique and gives a penalty when they differ spatially in size,
location, and shape.

To find the optimal background regions we need to evaluate all possible cluster com-
binations of mean-shift segments, which has exponential complexity O(2!7 “l). This
complexity is reduced using a modified version of the coalition formation process pro-
posed by [SK98], which only have square complexity with respect to the number of
mean-shift segments O(| P%|?).

4.2  Negotiation

Coalitions of mean-shift segments are formed by an iterative negotiation process. At
iteration t = 0 each mean-shift segment p; € P4 broadcast its description, (Sf‘, hf), and
selects a set of possible coalition members c4(0) C P4 including all other mean-shift
segments with a spatial similarity larger than th:

C2(0) = {Vp; € P*Sim(i,j,d) > th} )
We define the value of a coalition CZ(t) at iteration ¢ as:
VA= Y Sim(i,j,d) 3)
JECL(t)
mean-shift segments are valued relative to their contribution, hence the value of p;

in coalition C¢(t) is:
Vi (5:t) = Sim(i, ,d) @

k2
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Thus, each segment forms a coalition including similar segments at the same node.
From this set of coalitions, background regions are iteratively extracted by a distributed
negotiation scheme. In each iteration of the negotiation the strongest coalition across
all nodes is chosen and used to form a background region and to inhibit segments in
succeeding negotiation iterations.

In more detail, stable coalitions are formed when each mean-shift segment p; at each
node d iteratively perform the following:

1. Compute and announce V2(t) = 5 jeca(r) V(j,t) toall other segments at all nodes.

2. Choose the highest among all announced coalition values, Vg2 (t).

3. If no other coalition at any node has a stronger coalition value, V2(t) = V.. (t),
then compute the weighted segmentation mask W¢ = ¢ 3 jecd V2a(4,t)S%; where

g € R! is a constant which normalize W* to have maximal value one. Remove all
p; € C’;i from further negotiation.

A s¢nsd d( .
4. Update VZ(j,t +1) = (1 — 2—3‘—mﬂ—|5 I+IS,‘.’,ml)Vi (,t);
5. Start over from 1.

At each iteration a weighted segmentation mask, W¢, is computed and |C¥| is de-
creased for at least one mean-shift segment. The process will be repeated until all (24
are empty or for a fixed number of iterations.

Note that the set of nodes only compares values of maximal coalitions, all other
computation of image data is processed locally at each node. The weighted segmentation
masks resulting from a raw image illustrated in figure 2.

4.3  Segmentation Mask

A segmentation mask can be extracted by thresholding each weighted segmentation
mask W¢. However, we do not have any analytic way to extract such threshold value.
Instead we calculate a Gaussian-mixture model (GMM) of the complement region of
W in the associated feature map f<, using 5 Gaussian models.

The resulting probability maps are suitable competition to W<, We compute the E;;
maps, which is the probability of pixel i to belong to the Gaussian model 7, for each
J =1,2,3,4,5. Furthermore, we denote the Gaussian model at W¢ with 7 =0, hence
Eo is the probability map for pixel i to belong to the Gaussian model at W¢. Finally,
thedprobability for pixel i to belong to background region C2 ,_ is the joint probability
WEEy.

The segmentation mask, 5%, associated with C%, ., is defined as the pixels i where
WEijy > E;; forall j = 1,2,3,4,5.

The segmentation mask from a raw image is illustrated in figure 3.

44  Region Completion

[ER92] demonstrated in a series of experiments that the visual cortex preattentively
completes homogeneous regions to object hypothesis. Inspired by this result we per-
form region completion of the segmentation masks S¢. The object completion is not
as advanced as the completion process demonstrated by [ER92], however it enables
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Fig. 2. Raw image and weighted summation mask for first, second, and third background region

i

Fig. 3. Raw image and segmentation mask for first, second, and third background region

detection of objects within homogeneous regions. One obvious completion process is
to fill in holes. Furthermore, objects e.g. at the border of a table often pop-out from the
table leaving a notch on the border of the segmentation mask. Regions corresponding
to artificial large indoor-objects, in the set of evaluation scenes, are often square or have
some vertical or horizontal straight lines. Following this discussion, we define the region
completion as filling in gaps where a vertical or horizontal straight line can be attached
to the original segment. Note that a notch in the corner will not be completed by this
process as predicted by [ER92] .

Moreover, we do not want to detect other overlapping background regions as salient.
Therefore we restrict object completion to regions not occupied by other original seg-
mentation masks.

Figure 4 illustrates a completed segmentation mask. We observe that the region is
more compound.

This process is solely based on intuition from the [ER92] experiments and can obvi-
ously be improved. However, the completion process enables accurate objects detection
and is sufficient at this point in the development process.

ey

Fig. 4. Raw image and completed segmentation mask for first, second, and third background region
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S Target Objects

All background regions that are spatially similar to a template are attended, e.g. all
background regions in the lower part of the visual field. The feature statistics of each
background regions is extracted and used to search for outliers which are likely to be a
target objects.

This process involves sending a sparse set of conspicuous data to all other nodes.
After this integration of sparse data, salient locations can be attended by foveated vision,
and the target hypothesis can be figure-ground segmented.

5.1  Background Region of Interest

The task is to find objects on a table which are expected to occupy a large fraction of the
lower half of the scene. We use a template to represent this knowledge. A background
region which overlaps more than 25% with the template it is considered a background
region of interest. Figure 5 illustrates the template used here.

Fig. 5. Template for background region

5.2  Foreground Region of Interest

To find foreground regions of interest (ROI) we calculate the feature statistics of each
background region of interest. The weighted summation mask W¢ of each such back-
ground region is used to calculate (m?,X4) at each node
d € {color, intensity, orientation}:

. ] XY . )
= g 22 2 @ yW )
z=0y=0
& I s~y d dy( rd d\Tvi7d
&= ,Wd,ZZU (z,y) = m*)(f*(z,y) —m*)TW (6)
=0 y=0

where W is the sum of all pixels in W¢.

We calculate the set of pixels p% which can be excluded from background region S¢
with confidence -y with respect to a Normal distribution (m<, 24). If this set is larger
that g, the confidence value is increased and a new set p% is computed. This process is
repeated until the size [p%| < q.

In the current implementation we have chosen the set v € 0.5,0.6,0.7,0.8,0.9, 1
and g = 0.25|S| without further investigation.

The sparse set of conspicuous pixels p‘é is distributed to all other nodes. At each
node an integrated saliency map is constructed from the sum of all pl. The integrated
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saliency map in convolved with a Gaussian kernel with a standard deviation equal to the
expected target size. Each peak of the saliency map, which is larger than one, is extracted
as ROL Hence, we only consider regions, of expected target size, that at least one node
has found conspicuous.

Each peak, which is selected in the saliency map, is attended with a foveated camera
with sixteen times higher resolution, right-most image in figure 6.

Fig. 6. Top row: Raw image, background region, and interest points at background region Bottom
row: foveated view at interest points

6 Center-Surround Saliency

A well-established attention model is the center-surround saliency model developed
by [IKO0O]. The source code is available at http://ilab.usc.edu/toolkit/.
However, to suite our choices of feature map definitions, an own implementation has
been developed based on [IK00]. Our implementation uses fewer scales and integral
feature maps (described in section 3), and is hence not equally good as the original.
However, it has similar properties as the original and is used here as a comparison of
typical behavior. It will be denoted CS-search.

It should be pointed out that CS-search does not have the same focus on distributed
processing as the proposed model; at the final step complete pixel maps are integrated.

6.1 CS-Search

Using the integral images we define center-surround saliency as the Euclidean distance
between the mean feature vector inside a center rectangle (rc) and the mean feature
vector inside a surrounding larger rectangle (rs). Let (r¢, rs) denote a center rectangle
with width rc and a surrounding rectangle with width rs, as illustrated in figure 7.

Six different center-surround saliency maps CS?TC,TS) are computed at each node
with:

(re,rs) € {(20,50); (20, 60); (30, 60); (30, 70); (40, 70); (40, 80)}

and
d € {color, intensity, orientation}



