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Preface

By Sergeev’s definition [1], nanochemistry is a field of science connected with obtaining
and studying physical-chemical properties of particles measurable on a nanometer scale.
According to this definition, polymer synthesis is automatically a nanochemistry by virtue of
Melikhov’s classification [2]: polymeric macromolecules (more precisely macromolecular
coils) are nanoparticles, and polymeric sols and gels are classified among nanosystems.
Catalysis of nanoparticles is one of the most important sections of nanochemistry [1-4].

The majority of catalytic systems are nanosystems [3]. At heterogeneous catalysis the
active substance attempts to deposit on a carrier in nanoparticle form in order to increase its
specific surface. At homogeneous catalysis active substance molecules have often in
themselves had nanometer sizes. The most favourable conditions for homogeneous catalysis
are created when reagent molecules are adsorbed rapidly by nanoparticles and are desorbed
slowly but have high surface mobility and, consequently, high reaction rate on the surface,
from the reaction, molecules of such structures are formed in which desorption rate is
increased sharply. If these conditions are realized in nanosystem with larger probability than
in macrosystem, then nanocatalyst has the raising activity that was observed for many
systems. In this connection, such questions arise as adsoption and desorption rate, surface
mobility of molecules and characteristics. Frequency of reagent interaction acts depends on
the size, molecular relief and composition of nanoparticles and the carrier [2].

Quite a large number of examples are cited of practical application of nanoparticles as
catalysts in chapter 8 [8]. However, to keep up the tradition in catalytic effects analysis, the
main attention is paid to the chemical aspects of the problem.

The new direction in polymers synthesis is the reaction performance in inorganic
compounds which on the one hand perform the function of reaction catalyst and on the other
hand function as nanofiller of the forming nanocomposite [5]. In these reactions, the main
property of nanosystems puts into effect — the large area of contact surface of catalyst — a
reactionary medium because of the small size of solid-phase catalyst particles [6]. In this case
the interaction catalyst — reaction product by virtue of the cited above classification should be
considered as two fractals interaction, as it is well known that both particulates surface with
sizes of nanometer interval [7] and macromolecular coil [8] are fractal objects. The indicated
circumstance makes structural study of catalysis inevitable within the framework of the
fractal analysis. This aspect was studied in Meakin, 1986 [9] for the first time.

The solution of the actual problem of nanomeasured particles and nanomaterials on their
base requires an interdisciplinary approach to the study of self-governed synthesis of
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nanoparticles. This follows from Shevchenko-Kadomtsev quantum-mechanical approach [10,
11] to nanoworld structure on the base of synergetics principles. Ivanova [12] confirmed this
property on the basis of self-governed synthesis analysis of stable structures of periodic
system atoms and nanoparticles with the sizes smaller than 100 nm. Therefore, just one more
method of catalysis study on nanoparticles is the use of synergetics principles. In this book,
the application of fractal analysis and synergetics methods was considered on the example of
both model reaction of transesterification in nanoparticles presence and for the case of a
number of widely used in practice polymerization reactions.
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Chapter 1

The Fractal Models of Gas Transport
Processes for Polymeric Materials

It is obvious that for chemical reaction realization in solutions or melts, the necessary
condition is the contact of reagent-diffusible molecules. This makes processes of reagent
diffusion in reactionary medium important and often the key moment of polymerization
reactions. Specific features of such diffusive processes will be studied in the subsequent
chapters. In the present chapter we consider the main rules of gas transport fractal models for
polymeric materials as a general case and also some practical applications of these
conceptions.

1.1. Structural Model of Strange (Anomalous)
Diffusion in Polymers

As it was known [1-3], the diffusivity value D for the same polymer can vary as the
function of gas-diffusant molecule sizes and testing temperature and for different polymers —
as function of glass transition (melting) temperature. This variation can make up several
orders of magnitude. Therefore for diffusive processes, descriptions often use power
functions [4-7]. Such strong D variation assumes diffusion processes division on slow and
rapid ones [8]. In the base of this division is placed the dependence of gas molecule
displacement S on time ¢ [9]:

S~ (1.1)

where for a classical case $=1/2, for slow diffusion B<1/2 and for a rapid one B>1/2.

Within the framework of fractional differentiation theory, it was shown that its main
parameter — fractional exponent o is connected with both B and structure characteristic —
fractal (Hausdorff) dimension dy by different functional forms is dependent on diffusion type.
In other words, structures with the same dr can have very different diffusivities D. Therefore
the authors [10] studied the possibility and conditions of realization of the indicated diffusion
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types in polymers and offereda structural model explaining a change in diffusion type. It was
made using the example of methane (CH,) diffusion in 11 polymers [2, 11-13].

In paper [1] the following dependence D on molecular weight M of gas-diffusant was
used:

D=KM™ (1.2)

where K and b, are constants.

The authors [4] offered a systematic increase of exponent by, with the growth of glass
transition temperature 7, of polymers and explained the observed law by the chain kinetic
rigidity increase with 7, rising. However, as constants K and by, are empirical, this makes it
difficult to predict D value with the aid of the equation (1.2).

The diffusivity D value within the fractal model of gas transport processes can be defined
according to the equation [14-16]:

D=D,f,(d,/d, """ (1.3)

where D(') is a universal constant, equal to 3.8x107 cmz/s, [z is relative free volume, dj, is this
volume microvoid diameter, d,, is a diameter of gas-diffusant molecule, D, is the dimension
controlling gas transport processes, d, is the spectral dimension of the structure accepted for
use in paper [10] 11 polymers equal to 1.0 [17].

As the dimension D, dependent on the ratio (dj/d,) value is accepted either fractal
(Hausdorff) dimension of structure dr (at (dx/d,)>1.70) or the dimension of localization

regions of excessed energy D; (at (di/dn)<1.70) [18, 19]. The values d; and D; are
connected by the relationship [20]:

(1.4)

It is not difficult to see, that the equations (1.2) and (1.3) give the same functional form of
D dependence on gas-diffusant molecule sizes: D value decreases rapidly in virtue of power
dependence at M or d), rise. However, the equation (1.3) does not contain empirical (fitting)
parameters that allow its use for D prediction. The exponent 2(D,-d;)/d, value in the equation
(1.3) can be determined by the slope of linear plots D(1/d,) in double logarithmic
coordinates. In Fig. 1.1 the dependence, determined by such method, of dimension D, on the
difference of glass transition temperatures 7, (or melting temperatures 7, for semicrystalline
polymers) and testing temperature T for 11 polymers is shown. As one can see, up to [7g(7},)-
T1< 120 K D, weak growth is observed and above the indicated temperature difference, the D,
value increases considerably more rapidly. From the equation (1.3) it follows, that the
dimension D, makes the main contribution in polymers diffusivity change at d,=const in
virtue of the power character of this equation and as changes of fluctuational free volume
characteristics f; and dj, are small and antibate [21]. Therefore the dimension D, can be
accepted as some main general characteristic of diffusion in polymers [10].
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Figure 1.1. The dependence of dimension D, controlling gas transport processes on difference of glass
transition 7, (melting 7,,) temperature and testing temperature 7. 1 — experimental data; 2 — calculation
according to the equation (1.8) [10].

The sharp change of the D, dependence on [T,(7,,)-7] at the last parameter value ~ 120K
assumes that this reduced temperature is the boundary between slow and rapid diffusion. The
interrelation dr and o for three-dimensional Euclidean space can be obtained by analogy with
paper [9] as follows. Let’s assume, that Hurst exponent H is connected with dy according to
the equation [10]:

d, =3-H. (1.5)

The authors [9] showed that in the equation (1.1) the exponent f§ is equal to (1-a)/2 for
slow diffusion and 1/(1+a) — for a rapid one. Equaling H to the mentioned expressions for o
according to the technique [9], let’s obtain the interrelation between o and dj:

L (1.6)

for slow diffusion and

(1.7)

for rapid one.

It was not difficult to see, that allowing for polymers structure in three-dimensional space
variation 2<d,<3 value o changes in the interval 0-0.5 for slow diffusion and 0.5-1.0 — for a
rapid one.

Accounting for D, increase at the difference of temperature [Ty(7,)-7] growth (Figure
1.1), the authors [22] obtained the interrelation between these parameters in the following
general form:

D, =c[r,(r,)-TF, (1.8)

where c is constant.
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As follows from Figure 1.1 data, at the assumed transition from slow diffusion to a rapid
one, D, value =6.5 or, according to the equation (1.4), d~2.81. The exponent o in the
equation (1.8) is equal to 0.095 for slow diffusion and 0.55 — for a rapid one. The values c for
these cases were accepted as equal to 4.45 and 0.52, accordingly. In Figure 1.1 the
dependences of D, on [Tg(7)-T] calculated according to the equation (1.8) at indicated o and
¢ values are shown. As one can see, they describe experimentally obtained D, variation well.
This means that at [T,(7,,)-T]<120 K slow diffusion is observed and above this temperatures
difference — rapid one [10].

In Fig. 1.2 the dependence of methane diffusivity D, on glass transition 7, (melting

T,,) temperature for 11 polymers is shown. This dependence reveals an interesting feature: up
to Te(7,)~450 K small values D, are observed and at Ty(7,,)>450 K begins the rapid

growth of diffusivity. Let’s note, that T(7,,) ~450 K corresponds to the value [T,(7,,)-T]=157
K, i.e. the plots of Figures. 1.1 and 1.2 are approximately in conformity. The similar picture
of dependence of diffusivity by CO; in case the of polyethylene D, as a function of testing

temperature 7" was observed in papers [23, 24], where rapid growth of D, at 7>263 was

connected with fractal properties of fluctuational-free volume. As was shown in the papers
[24, 25], representation of fluctuational-free volume microvoid as a three-dimensional sphere

is too simplified and it is more precise to consider this microvoid as D} -dimensional sphere.

In this treatment microvoid volume v/ is given by the following equation [20]:
D;/Z D;
fr h
Vy =7 , (1.9)
iD 12 !

where r), is a radius of free volume microvoid.

Deg, 107, em®s

\D\

e e

300 400 500 600

Figure 1.2. The dependence of methane diffusivity D(,H4 on glass transition 7, (melting 7,,)

temperature for 11 polymers. The vertical shaded line indicates the 7, value at which percolation of
fgf' occurs [10].
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If one designates microvoid volume in three-dimensional representation as v, then
relative fractal free volume £ gf' can be calculated as follows [10]:

fl=r—=. (1.10)

where relative fraction of fluctuational free volume f; can be accepted equal to 0.060 for
solid-phase polymers [21].

For the estimation of the value v, there exists a number of methods and in paper [10] the
following one was used. The experimental magnitude v, was calculated according to the
formula [26]:

1,=7.8v,~1.29, (L.11)

where 13 is a life time of orthopositronium in experiments on positrons annihilation. The
values T3 were accepted for the studied polymers according to the data of papers [13, 27-29].
In the equation (1.11) 13 is given in ns, v, — in nm’.

The dependence of the value calculated by such method f g" at the condition D;=D, on

Ty(T,) is shown in Figure 1.3. As it was expected f g” increase is observed at T,(7,,) growth

and at Ty(T,,)~440 K, that corresponds to [7,(7},)-T]~147 K (compare it with Figure 1.1),
value fgﬁ reaches percolation threshold in assumption of the scheme of overlapping spheres

(microvoids), which is equal to 0.34+0.01 [30]. In other words, according to the percolation
theory at [Tg(7,,)-T]=147 K or Tg(7,,)~440 K in polymeric membrane a network of connected
free volume microvoids is formed that facilitates diffusion conditions of gas-diffusant and
sharply raises diffusivity [10].

i

Figure 1.3. The dependence of relative fractal free volume fgf' calculated according to the equation

(1.10) on glass transition 7, (melting 7,) temperature. Horizontal shaded line indicates percolation
threshold fgf' , which is equal to 0.34+0.01 [10].
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It is necessary to give explanations concerning absolute values f gf’ which, calculated

according to the equation (1.10), can exceed 1.0 which at first seems to be physical nonsense. As a
matter of fact, this means local “splash” of value f gf' within the limits of fluctuation of average

value f; when v/ >16.7v,. In accordance with a large general quantity of microvoids (~ 10% m?)

such “splash” for their limited number leaves value f, practically invariable but can be effected on
local properties of polymers on the molecular level.

Hence, the results cited above showed that in polymers both slow and rapid diffusion
processes can be realized. The transition from the first type of diffusion to the second one is
defined by glass transition (melting) temperature of polymers, i.e. by their chains’ degree of
flexibility and results in a sharp increase of diffusivity at the same fractal dimension of polymer
structure. The application of percolation theory and fractal analysis allows one to give structural
treatment of this change — the transition from slow diffusion to rapid one is due to formation
through percolation network of overlapping microvoids of fluctuational free volume [10].

The authors [31] studied oxygen diffusion in nonbornens series with different 7, and obtained
them from solutions by two methods — with rapid (method 1) and slow (method 2) solvent
evaporation. It was found that the diffusivity growth with 7, for the films obtained by method 1 is
much stronger than in method 2 (Figure 1.4).

Therefore it was assumed that in films with more equilibrium structure (method 2) slow
diffusion is realized and in nonequilibrium films (method 2) a rapid one. To check this
assumption, the authors [31] made at first the calculation of o according to the cited above
technique [10], then D, according to the equation (1.8) at the cited above coefficient c values and

at last DOz values according to the equation (1.3). At D calculation the ratio (d,/d,,)=const=1.15

for slow diffusion and (di/d,,)=1.06-1.31 for a rapid one in virtue of v{’ change (v,=const). In

Figure 1.4 the comparison of theory and experiment is shown from which follows their good
correspondence. Hence, the transition to more equilibrium structure of polymers changes the
mechanism of gas diffusion in polymers from rapid to slow. Properties of fractal free volume in
connection with gas transport processes will be considered in the following section in detail.

InDo,
7k 4

(TeD. K

Figure 1.4. The dependences of diffusivity D()2 by oxygen on differences in glass transition

temperatures and testing temperatures (7,-7) in logarithmic coordinates for nonbornenes. Experimental
(1, 2) and calculated according to the equation (1.3) (3, 4) data for slow (1, 3) and rapid (2, 4) diffusion
[31].
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1.2. Fractal Free Volume and Gas Diffusion in
Polymers

At present it is assumed [1, 2], that gas diffusion in polymers is realized by gas molecules
passing through free volume microvoids, which in the present case is an analog of porosity in
crystalline solids. However, for gas-diffusant molecules passing through a polymeric
membrane it is necessary to form through channels or, in other words, a percolation network
of microvoids. Besides, in the case of an overlapping spheres scheme the percolation
threshold is equal to 0.34+0.01 [30], that is much larger than maximal possible value of
relative free volume f,, which is equal to 0.159 for polymers [32]. This apparent discrepancy
has two alternative explanations. In classical models, the diffusion process is considered as
sequence of jumps by gas-diffusant molecules from one free volume microvoid to another,
which are formed and annihilated as a result of thermal fluctuations. Also, the mentioned
microvoids are simulated by a three-dimensional sphere that exludes reaching by f; value the
percolation threshold [33]. However, simulation of a microvoid as a three-dimensional sphere
with smooth walls is far from reality [34]. Microvoid walls represent the surface of
macromolecules segment oscillating about their equilibrium states [35]. Therefore the authors

[24, 25] offered to simulate the indicated microvoid by D) - dimensional sphere this is the

main postulate of the free volume fractal conception. As shown above, in this treatment f gf'

value can reach percolation threshold and this condition is the boundary for realization of
rapid and slow diffusion processes in polymers [10]. The authors [36, 37] demonstrated
reality of fractal free volume in polymers using general models of fractal structures dynamics
[38] and experimental data on the dependence of diffusivity on temperature [39], which were
obtained for the diffusion of carbon dioxide in high density polyethylene (HDPE) according
to the equation of Arrenius type [39]:

E
Dy, =D, exp(— R“Tj, (1.12)

where D, is diffusivity for carbon dioxide, Dy is the constant, £, is the diffusion activation

energy, R is universal gas constant, 7' is testing temperature.

Stanley [38] considered fundamental laws of diffusion and transport for the mediums
representing a random mixture of components A and B in which there are sections conducting
both well and badly. It was obvious that the concretization of this general model for gas
diffusion in polymers looks like this: polymer is considered as random mixture of free
volume A (conductor) and actual polymeric material (macromolecules, occupied volume) B
(insulator) having zero diffusivity. This is the so-called random network of resistors (RNR) or
limit of “ant” [38]. In the RNR limit, the larger conductivity is assumed equal to unit and the

smaller one is equal to zero. At the approach of component A concentration, i.e. fgf', to the

percolation threshold p. from above (p.=0.34+0.01 [34]) the macroscopic conductivity ¥ is
rushing to zero and its behaviour is described by critical exponent p [38]:



8 G.V. Kozlov and G.E. Zaikov

s~(r7-p). (1.13)

For the case f gf' <p, the limit of random superconducting network (RSN) is used, where

the smaller conductivity is equal to unity and the larger conductivity is infinite. At the
approach to p, from below the conductivity rushes to infinity according to the law [38]:

2~(p.- 1) (1.14)

The macroscopic conductivity value is connected with diffusivity D according to the
relationship of Nernst-Einstein:

S~nD, (1.15)

where 7 is density of charge carriers.

Let’s consider a concrete form of the relationship between ~ and D. Diffusive form J
represents substance quantity O (analog of ») passing through the surface element 4 during
time unit 7 [33]:

J==. (1.16)

> (1.17)

where ¢; and ¢, are diffusant concentrations on both external and internal surfaces of the
polymeric membrane, / is thickness of this membrane.

In a stationary diffusion regime c,=const, c,=const, /=const, A=const and for f=const
according to the equations (1.16) and (1.17) let’s obtain [36]:

D~0, (1.18)
or
D~n. (1.19)

Further according to the relationships (1.15) and (1.19) follows:
T ~D*. (1.20)

The exponents p and s in the relationships (1.13) and (1.14), respectively, are defined as
follows. The value p is given like this [38]:
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L —@-2)+(d,-4)). (1.21)
v

P

where v, is percolation critical index, which is equal to 0.80-0.88 [30, 40, 41], d is dimension
of Euclidean space, in which fractal is considered (it is obvious, in our case d=3), d, is
dimension of trajectory of random walk on fractal, dyis fractal dimension of structure.

The value dycan be calculated according to the equation [42]:

1/2
(Pcl
d =3-6 —-| , 1.22
- 2] (122

@

where @, is a relative fraction of local order regions (clusters), S is a macromolecule cross-
section area (for HDPE S=18.7 A? [43]), C is characteristic ratio which is an indicator of
polymer chain statistical flexibility [44] and is equal 5.8 to for HDPE [45].

In its turn, @, value as T function can be calculated as follows [46]:

¢, =0.03(1-KXT, -T)”, (1.23)

where K is crystallinity degree, 7, is melting temperature.
According to the Aharony-Stauffer rule dimension d,, is defined as follows [38]:

d,=d, +1. (1.24)

The exponent s can be calculated according to the equation [38]:

2 =d,-(@-2), (1.25)
v

p
where d, is dimension of nonscreening perimeter of fractal object which is equal to [47]:

d-d
d

w

L, (1.26)

u

d,=(d, ~1)+

In Figure 1.5 the dependence of relative fractal free volume f gf’ on testing temperature 7'

for HDPE is shown, calculated according to the equations (1.9) and (1.10).
As one can see, f gf’ value can be essentially higher than the limiting value f; in classical

treatment (0.159 [32]) and at 7270 K reaches percolation threshold (compare with Figure
1.3 data). Further according to the relationships (1.13) and (1.14) one can determine value X
above and lower percolation threshold, i.e. above and lower 7=270 K, and then to calculate
according to the relationship (1.20) diffusivity D’ in relative units. In Fig. 1.6 the comparison
of temperature dependences D, calculated according to the equation (1.12), are shown. As
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one can see, the full similarity of the dependences D'(T) and D, (T) is observed, that

indicates the reality of fractal free volume for polymers. Besides, in Figure 1.6 the
dependence DT(T) (the curve 3) is shown calculated according to the relationship (1.14) in
assumption, that f; value changes in limits 0.060-0.110, i.e. as classical theories of free
volume [1, 2] assume. As one can see, in this case D" increase in interval 7=173-293 K is ~
10 %, that obviously does not correspond to the experimental data [37].

I
06 -
04 |-
0.2 —A/
A
| 1 | |
173 213 253 293

T.X

Figure 1.5. The dependence of fractal fluctuational free volume fgf' on testing temperature 7 for

HDPE. The shaded horizontal line indicates the percolation threshold value pc [25].

D', relunits D ~10em’'s

-1 1.5

na b

Lo

0.1

Figure 1.6. The dependences of diffusivities D’ and sz calculated according to the relationships
(1.13) and (1.14) (1) and (1.12), respectively, on testing temperature 7 for HDPE. The curve 3 shows
the dependence D'(7) calculated according to the relationship (1.14) with Sy use [36].

Adduced in Figure 1.5 f gf’ values reach ~ 0.55 and in principle can be larger than 1.0

(see Figure 1.3), that at first sight seems to be physical nonsense. However, if we consider the
formula (1.10) for f gf’ estimation then it is obvious, as it was noted above, that it is a matter

of local increase of microvoid volume in comparison with the assumed one of free volume by



