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FOREWORD

Constitutive modeling with microstructural effects is becoming increasingly
important in structural and granular materials. More sophisticated methods
that utilize the microstructure of the material are being favored more and more
as opposed to the available macrostructural models. More important is the
effective correlation between the microstructural and macrostructural points
of view in such a way as to lead to modeling that can be used in practical
applications. The primary purpose of this symposium is to examine the latest
research in the microstructural characterization in constitutive modeling of
metals and soils.

Consideration of the microstructure in the constitutive modeling of materials
takes several forms. Some of these forms involve the study of dislocations in
crystals and polycrystalline aggregates and/or the inclusion of the plastic spin
in materials that undergo plastic deformation. This is especially important for
crystals undergoing multiaxial deformation and for materials subjected to large
inelastic deformation. In addition, the microstructure plays an important role
in the constitutive modeling of granular materials.

Constitutive modeling of materials based on macroscopic analyses is widely
available in the literature. This macroscopic description of material behavior
provides satisfactory answers to many problems and predicts stresses or
strains that are acceptable for practical application. However, the methods
based on this description are not reliable and involve large factors of safety.
Furthermore, the results using these methods become questionable when
problems of large inelastic deformation are encountered. This is clearly dem-
onstrated by studying the problem of finite simple shear of elastoplastic ma-
terials. Several papers have appeared recently in the literature dealing with
this topic. In fact, some new developments in this area are included in this
symposium. It has been well known that using the Jaumann stress rate in
analyzing the simple shear kinematically hardening material leads to oscillatory
stress distributions even though the shear strain is monotonically increasing.
Several remedies have been suggested to solve this discrepancy utilizing dif-
ferent techniques. It is noticed that the most successful solution to this prob-
lem have utilized, to some extent, the microstructure. In particular, the
introduction of the plastic spin has been shown to have a microstructural
connection. The same remark holds for those methods dealing with the use
of modified spin tensors in the corotational stress rate equations, although in
this case, the microstructural connection is not clear or has not yet been es-
tablished.

Dislocation theory has been utilized successfully in the microstructural char-
acterization in the constitutive modeling of metals. Recently, researchers have
shown a link between the dislocation theory and continuum theory based on
the physics of plastic deformation. In particular, the plastic spin has been
directly correlated to the study of continuously distributed straight edge dis-
locations.
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The articles appearing in this symposium reflect the recent trends in the
microstructural constitutive modeling of metals and granular materials. These
involve several aspects of microstructural characterization ranging from dis-
locations in crystals to the micromechanics of large inelastic deformation. It is
noticed that much research effort is directed towards the effects of anisotropy
in the constitutive models. These effects are reflected through the study of
polycrystalline aggregates and large plastic deformation. In the constitutive
modeling of metals, much emphasis is placed on large inelastic deformation,
the plastic spin, texture development and polycrystalline aggregates. The mi-
crostructural characterization of granular materials is displayed using several
approaches utilizing indentical spheres and elliptical particles. In these cases,
the effects of the microstructure are studied through numerical simulations
and cone penetration tests.

It is hoped that the symposium gives a comprehensive overview of the
recent trends in research in the microstructural constitutive modeling of metals
and granular materials. The editor wishes to thank the authors for their con-
tributions. Indeed, the time and effort invested in preparing these manuscripts
is gratefully appreciated.

George Z. Voyiadjis
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MECHANICS ASPECTS IN MICRO- AND NANO-SCALES

Elias C. Aifantis*
Michigan Technological University
Houghton, Michigan

ABSTRACT

In this lecture a discussion of various mechanics aspects as they apply
to the modelling of mechanical phenomena occurring at the nano and micro
scales 1is given. Emphasis is placed on the description of relevant
chemo-mechanical instabilities and their effect on pattern formation, and on
developing a framework where pattern-forming instabilities at one scale will
manifest explicitly on the occurrence of instabilities and corresponding
patterns at another scale. Attention is restricted, in particular, on the
understanding of the mechanisms of deformation and localization at the nano-,
micro-, and macro-level, as well as on determining the degree of coupling
between them and its effect on the overall macroscopic response. To
accomplish this, all three regimes of deformation (i.e. prelocalization,
postlocalization, and fracture) are considered. At the nanoscale (~10 - 100
nm grain size) recent results suggest that plastic deformation occurs via the
rearrangement and production of free volume associated with nanopores at
triple grain boundary junctions, but also direct grain boundary "stretching®
and "rotation®" and "nano damage" development has been observed. At the
microscale (~10 - 100 pm grain size) the usual deformation mechanism is
dislocation motion and production within the grains, while grain boundaries
may act as obstacles or sources to dislocation evolution. Moreover, "micro
damage" development is another mechanism of irreversible deformation, either
independent or indirectly related to dislocation processes. Modelling of the
evolution, stability, localization, pattern formation, and interaction of the
nano and micro deformation mechanisms and of their influence on the macro
(~0.1 - 1.0 mm) scale may result into a rational approach for synthesis and
design of nano (or micro) phase materials and composites. For example, the
determination of possible wavelengths occurring at the nanoscale and their
effect on the spacing of deformation bands and crack patterns occurring at the
micro and macro scales may provide a new approach for controlling and
optimizing the mechanical behavior of manmade materials.

A problem for connecting "micro" to "macro" scales based on the concept
of *"normal" and "excited" states has been proposed by the author in the last
decade. As a result of this program, "standard" and "non-standard" models of
macroscopic plasticity were obtained on the basis of crystal slip and
dislocation motion, and a justification for introducing higher order gradients
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of strain into respective constitutive equations was provided. The physically
based "non-standard" plasticity models have led to a direct interpretation of
axial effects in torsion. The higher order gradients have led to a direct
interpretation of measurements pertaining to shear bands widths and spacings.
The notion of *"normal*" and “"excited" states 1is extended to describe
deformation mechanisms occurring at the nanoscale. Nanostructural materials
exhibit a large surface-to-volume ratio and, as a result, the material element
may be viewed as a superposition of ®"surface" and "bulk®" continua with each
one supporting its own mechanical (stress and strain) fields and also allowed
to exchange effective mass and momentum with the other. As in the case of
micro-macro transition, the approach can now provide a framework for the
nano-micro-macro transition. As an example, the development of nanodamage is
documented from experimental results obtained recently by the MTU group and
then a set of partial differential equations modelling nanodamage evolution is
derived.

In concluding, a suggestive mathematical framework is outlined below to
indicate a possible apparatus to address the question of nano-micro-macro
transition. A starting point will be to decompose the strain rate D (the

symmetric part of the velocity gradient) as follows

D =Dy + Dy

where DZis associated with a long-wavelength and D, is associated with a

short-wavelength of co-existing deformation processes. The symbols £ and ¢
may represent either macro and micro or micro and nano scales. In cases
where all three scales need to be addressed simultaneously, a third strain
rate quantity should be included the above equation. To fix ideas, £ is
identified with the macro scale and ¢ is related to the micro scale, for
simplicity. The strain D is the one wusually appearing in continuum

~£

plasticity formulations whereas DZ is neglected. Within the length scale £
characterizing the macroscale, the microstrain D2 may be spatially periodic

and thus its mean value becomes zero without contributing to the overall
strain. This is true for "stable" situations where the two length scales £
and ¢ may be treated independently. Near instability, however, a strong
coupling between the two length scales £ and ¢ takes place and the deformation
processes occurring at the microscale set the stage for the evolution of

deformation at the macroscale. For example, the average spacing between
micro-deformation bands may define a macroscopic bending stiffness for the
analysis of macro-shear bands. Moreover, the patterning of microstructural

variables and related "adiabatic elimination" of the micro-deformation or
short-wave length variable D, can lead to a higher-order evolution equation

for the intensity y of the macro-deformation variable D, of the general form

L
7 =g9l7,7T) + d(q2 + V2)21,

where g is a strain-production function related to dislocation production
within the elementary volume, d is a phenomenlogical coefficient, and q a
preferred wave number associated with the spacing of micro-deformation field.
This equation is similar to the "slow-mode dynamics" equation derived for
fluid and chemical systems and its stability analysis will provide certain
information on the connection between the spatial features of micro- and

macro-deformation patterns. A similar approach may be adopted for making a
connection between nancoscales and microscales, as well as for the more
general question of addressing the nano-micro-macro transition. Various

classes of nano-micro-macro deformation phenomena are discussed on the basis
of the aforementioned approach ranging from deformation and shear bands to
nanodamage development and zig-zag cracking.
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SOME ASPECTS OF THE MACROSCOPIC PLASTIC SPIN
DURING TEXTURE DEVELOPMENT
IN POLYCRYSTALLINE METALS

Erik van der Giessen
Engineering Mechanics Laboratory
Delft University of Technology
Delft, Netherlands

ABSTRACT

The macroscopic plastic spin in polycrystalline metals due to crystallographic texture devel-
opment is identified, and defined on the basis of crystal plasticity theory. The plastic spin in cubic
polycrystals during large strain, planar stationary deformation processes is computed from simula-
tions using a Taylor-Bishop-Hill approach. The effects of crystal structure and initial anisotropy in
pre-textured materials are discussed. The macroscopic plastic spin according to a very much simpli-
fied 2-D model for slip on (infinitely) many slip systems in a polycrystal is also discussed, and the
analytical results are compared with those of the Taylor simulations. A few aspects are examined of a
constitutive description of the plastic spin which utilizes nonsymmetric tensors as internal variables.

INTRODUCTION

The plastic spin has recently been identified as a key concept in the macroscopic constitutive
description of large elastoplastic deformations of materials which exhibit deformation-induced ani-
sotropy. As a constitutive entity added to the usual continuum framework, the plastic spin governs the
rotation of the directions of anisotropy during the deformation process. With very few exceptions, the
applications to the macroscopic constitutive description of polycrystalline metals have been limited
to modeling the deformation-induced anisotropy in terms of a kinematic hardening model. Corre-
spondingly, the constitutive equation for the plastic spin has so far been formulated mainly within the
framework of kinematic hardening (e.g. Dafalias, 1983; Loret, 1983; Van der Giessen, 1989b); such
approaches have been critically examined in (Van der Giessen, 1991). Following suggestions by Man-
del (1982), Van der Giessen and Van Houtte (1990, 1991) proposed instead to explicitly identify the
macroscopic plastic spin for metals on the basis of the key physical mechanism for deformation-
induced anisotropy, namely crystallograhic texture development. The macroscopic plastic spin can
then be defined in a physically sound way on the basis of crystal plasticity theories as a volume aver-
age over the polycrystal of the slip-induced plastic spin for each crystallite.

In the present paper, following a brief recapitulation of the constitutive framework that we
work in, we further develop this concept of a micromechanics based plastic spin associated with tex-
ture development. The identification of the plastic spin on the various size scales — single slip system,



single crystal, polycrystal — is carefully presented, and results are given for the macroscopic plastic
spin obtained from numerical simulations using the Taylor-Bishop-Hill model to perform the volume
averaging.

We proceed by briefly presenting some issues related to the routes that are currently being fol-
lowed in order to incorporate this macroscopic plastic spin concept into macroscopic phenomenolog-
ical plasticity models. One of these routes is based on a very much simplified model proposed by Van
der Giessen (1989c¢) for slip on (infinitely) many crystallographic slip systems in a polycrystal, but
which is designed so as to incorporate the main features of texture development, while being simple
enough to allow for a largely analytical treatment. Macroscopic plastic spin results obtained by this
multiple slip model are discussed and compared with the Taylor simulations. Finally, we discuss some
aspects of another, purely macroscopic, approach which uses nonsymmetric tensorial internal vari-
ables to construct the constitutive law for the plastic spin. A possible micromechanical interpretation
of these nonsymmetric tensors related to single slip is presented, and new explicit results are given for
the corresponding macroscopic quantities according to the above multiple slip model.

Tensors are denoted by bold-face letters; I is the second-order unit tensor. The tensor product
is denoted by ® and the following operations apply: ab = a‘kbkj e,®¢,a-b = a’b;, with proper
extension to tensors of different order (e;and €', i = 1, ...3, are reciprocal base vectors). Superscripts
T and —1 denote the transverse and inverse of a second-order tensor, respectively, tr denotes the trace
and a superposed dot denotes the material time derivative or rate.

CONSTITUTIVE FRAMEWORK FOR LARGE STRAIN PLASTICITY

Many large deformation plasticity theories use the concept of an intermediate configuration,
but the precise definition and interpretation of that concept may differ. In this section we briefly reca-
pitulate the framework we are going to adopt throughout this paper, mainly for the purpose of defini-
tion and notation, but also to emphasize the role of plastic spin in such frameworks.

Whatever the form in which the material anisotropy manifests itself to us, its origin lies in the
microstructure of the material. On the basis of this observation, an important class of today’s phenom-
enological large strain plasticity theories have explicitly endowed the continuum with a so-called sub-
structure in the form of a set of three vector directors. This proposition is usually attributed to Mandel
(1971), but completely similar ideas were put forward slightly earlier by Besseling (1968); in fact, our
presentation here is a mixture of these two. The purpose of the introduction of such a substructure is
to serve as a tool to monitor, at any instant, the state of the macroscopic anisotropy.

Let the director vectors associated locally with a (infinitesimal) material element in the current
state be denoted by £, (o« = 1, ...3). Upon unstressing the element elastically, so that the material
element changes into the so-called intermediate state, this triad is taken to transform in an affine man-
ner. The corresponding triad in the intermediate configuration is denoted by { £, } (see Fig. 1), and we
now define the director vectors such that the €, are orthonormal vectors. The orientation of this triad
{£, ) in reference to a spatially fixed global basis {e;} (i = 1, ...3) then defines the orientation of the
intermediate configuration, and the so-called isoclinic configuration is defined as the intermediate
configuration in which the triad { €, } retains the same orientation throughout the deformation process.
Denoting the mapping from isoclinic configuration into current configuration by F?, the configuration
of the material element in the current state as well as that of the director vectors g, are linked to the
corresponding quantities in the isoclinic configuration through the bijections dx = F®da,
£, = F°e, (dx and da are corresponding line elements in the current and isoclinic configuration,
resectively). According to the polar decomposition theorem, F¢ can be expressed as F* = R®U® with
the symmetric tensor U® describing the elastic stretch and with the proper orthogonal tensor R®
describing the orientation of the intermediate configuration relative to the current configuration.
Throughout this paper, we assume that elastic strains remain negligible, i.e. U® =1 so that F® = R®.
Hence,



dx = R°da, g, = R .

Plastic deformations give rise to a rate of change of the local geometry of the continuum in the
intermediate configuration, which is characterized by a plastic rate of deformation tensor A? such that
da = A”da.However, by definition, the triad of directors in the isoclinic intermediate configuration
remains unchanged, €, = 0. Neglecting elastic strains, the continuum rate of deformation, or veloc-
ity gradient, L = FF! along with its strain-rate and spin parts D and W, respectively, can then be
decomposed as

L =L¢+L?; L®=RR, LP=RAPRT,

or
D =D, (1)
W' =R°RT = w-w~ | 2

where generic symbols D and W denote symmetric and skewsymmetric parts, respectively. Common-
ly, the tensor A? is expressed in terms of the plastic part of the deformation gradient , FP = Fe_lF,
as AP = FPF”_1 . However, as discussed in detail by Van der Giessen (1989a), the introduction of F?
is not needed and the A? itself can be regarded as the primary quantity to characterize the plastic de-
formation process.

The relationship (2) emphasizes the key idea behind the introduction of the director vectors,
namely that the kinematics of the continuum and that of the substructure are distinct entities (see also
Dafalias, 1987). The spin of the continuum is governed by W, whereas the spin W* governs the rate
of change of the tensor R® and hence of the orientation of the substructure/director triad, i.e.

e g
£, = WHg .

This observation immediately clarifies the role of the plastic spin WP as the spin of the continuum rel-
ative to the subtructure, thus providing the link between the kinematics of the continuum and that of
the substructure. In addition to constitutive equations for the plastic strain-rate D” like in any plasticity
theory, constitutive equations must now be supplied also for the plastic spin W7 (Mandel, 1971).
The orthonormal triad { £, } naturally serves a base of reference for the anisotropic properties
of the material element in the intermediate state. Although we shall by no means give a comprehensive
treatment of anisotropic constitutive properties here, we note that, for instance, the elastic strain ener-

dx

Isoclinic Reference Configuration F¢ = R°U* 2
Current Configuration

Fig. 1. Two-dimensional illustration of the current and isoclinic configurations of continuum and substructure.



gy function u (per unit mass) is formulated in a natural way in terms of the components of the elastic
(Lagrangean-type) strain tensor E = (FeTF® — 1) /2 with respect to the base vectors g, (see, e.g.,
Besseling, 1968; Van der Giessen, 1989a), i.e. u = u(EaB). The state equation for the Cauchy stress
o then reads,

_ eOU eT Jd _ 0

¢ = pR°s=R*", a—E_aE—aB(E“®EB)’ 3)
where p is the mass density and where F¢= R® has been used. Similarly, the yield function ¢ is for-
mulated naturally in terms of components with respect to the triad { €, }. Following Van der Giessen
(1989a, 1989c¢) and considering as an example a yield function which depends only on the stress de-
viator s = ¢ — (tr6/3) L, the yield function is formulated in general as a function ¢ = @(Zp) of
the components on &, of the stress tensor £ = R® ¢R*. This tensor X represents a stress tensor re-
lated to the intermediate configuration, which is dual to the rate of deformation AP. In cases where
anisotropic hardening needs to be taken into account, the yield function needs to be augmented with
hidden internal variables measured in the intermediate configuration, which we denote collectively by
A. Just as for the stress state dependence, non-scalar valued internal variables appear in the yield func-
tion through their components on { €}, denoted collectively by A, i.e. ¢ = @(Zqp, Ay).

The role of plastic spin in these key constitutive quantities now lies in the explicit appearance
of tensor components in the triad { €, }: The arguments of these functions are explicitly dependent on
the rotation R® between the directions of anisotropy in the isoclinic and current configuration. As is
obvious from the relation (2), the rate of change of R® depends on the continuum spin as well as on
the plastic spin. Conversely, the current value of R®, as needed in for instance elastic energy and yield
function, is to be obtained from integrating R® = W* R¢ with W* according to (2).

The role of plastic spin emerges even more clearly when rate equations are considered. For
instance, the rate of change of Cauchy stress can be expressed as

2
e e 0U

6-W*o+oW* = L°D°—ouD, L° = pR{ RGy=——7—
’ IBOE yOE
a0

RiRi (e,®@e ®e, ®e)

by straightforward differentiation of (3) and invoking the balance of mass p + ptrD = 0. Rewriting
that in terms of the Jaumann stress rate, 6 = 6 — Wo + 6 W, immediately shows how the plastic spin
enters into the constitutive equations. Of course, this discussion is by no means exhaustive; its sole
purpose was to give an indication of where and how the concept of plastic spin appears in constitutive
relations for large strain plasticity. For more details one is referred to the specialized literature. It may
be noted that in the case of an isotropic material, the elastic energy function and the yield function can
be expressed in terms of the invariants of the tensors involved, so that the orientation of the triad {& }
is irrelevant. Therefore, the plastic spin is a redundant quantity and can be arbitrarily set equal to zero
for isotropic materials, as was already deduced by Mandel (1971).

In the above, we have incorporated the anisotropy in the formulation of, for instance, the yield
function ¢ = @(Z,p) by expressing it directly in terms of components in {&,}. An alternative
approach would be to express it as an isotropic tensor function of the tensor X along with the base
vectors g4, so that ¢ = ¢(X, g,) (a0 = 1,...3). The use of such an approach together with the rep-
resentation theorems for isotropic tensor functions (Wang, 1970) for specific types of anisotropy, such
as orthotropy or transverse isotropy, can be quite fruitful (see e.g. Loret, 1983). However, for general
anisotropy, all that these representation theorems tell is that ¢ = ¢(Z, €,) is fully equivalent to
¢ = P(Zqp)-

Finally, it is noted though that the relevance of the plastic spin concept and the necessity for
its constitutive description are still being debated in the recent literature (see, e.g., Nemat-Nasser,
1990). However, this seems to be solely due to the fact that some authors do not explicitly define a
substructure (or a director triad) embedded in the material, so that in fact their concept of plastic spin



is sweepingly different from that appearing in Mandel’s and related works as discussed above. Instead
of such an explicit substructure, other implicit concepts are employed to monitor or define directions
of anisotropy, such as the principal directions of the plastic stretch tensor (Nemat-Nasser, 1990), and
the spin of these directions is used explicitly in the pertinent rate constitutive equations. So, this latter
approach is in many respects really an alternative to substructure based theories; with such alternative
implementations of the concept of spinning of anisotropy directions, many of the aspects to be dis-
cussed presently are equally relevant.

PLASTIC SPIN ACCORDING TO CRYSTAL PLASTICITY

For polycrystalline metals, the prime source of anisotropy on a macroscopic scale is texture
development during large strain deformation processes. In this paper, we confine attention to crystal-
lographic texture which is due to the formation of a preferred lattice orientation of the crystallites;
morphological texture will be neglected. In order to describe the macroscopic material response in
terms of the constitutive framework of the previous section, one must first identify the substructure
that is relevant to this kind of anisotropy, followed by identifying the associated plastic spin; this will
be briefly discussed first. In the subsequent subsection we will summarize the Taylor polycrystal the-
ory that is used then to actually determine the plastic spin during a number of deformation processes
by numerical simulation.

Substructure and Plastic Spin for a Polycrystal

Crystallographic texture development is due to lattice rotations accompanying crystallograph-
ic slip. We therefore start our considerations here with single slip. The kinematics can be conveniently
described employing the above-mentioned framework (cf. e.g. Rice, 1971; Asaro, 1983; Aifantis,
1987). Consider a slip system (n, by) in the isoclinic reference configuration, with n, denoting the
unit normal to the slip plane and by the unit vector in the slip direction. The identification of the sub-
structure for such a slip system is straightforward: choose &, = b, and €, = nj, so that
€5 = by xny. When 77 is the slip rate on this slip system, the plastic shear flow determines the plastic
rate of deformation in the isoclinic configuration as

A? = yb,®n,

Since, the slip system (n;, b;;) remains unchanged in the isoclinic configuration, A? depends only on
the slip rate y”. Neglecting elastic strains again, so that F¢ = R, the slip system vectors in the cur-
rent configuration can be obtained by a rigid rotation, i.e. b = R°b;, n = R°n;. Hence,

L’ = yb®n @)

so that the plastic strain-rate D” and the plastic spin W7 are determined immediately by the slip rate
and the current slip system geometry. In general, the slip induced plastic spin W? is not equal to the
applied spin W. With the above interpretation of the substructure, it follows that the tensor W* ac-
cording to (2) determines the spin of the slip system, i.e. b = W*b, n = W*n.

For future reference, we note here that with the above identification of the €, the components

of A? with respect to the £,, A” = Afe, ® gy, read Af, = ¥ and ALy = 0 otherwise. The fact
that

A3 = AP (ng®by) =L”- (n®b) =0 (5)

has been put forward by Van der Giessen (1990) as a key property of plastic deformations caused by
single slip. Moreover, it was suggested to use (5) as a kinematic constraint on A” imposed by the fact



that single slip occurs on the (ng, by) slip system.

Each crystallite in a polycrystalline metal contains n > 1 possible slip systems. Here, we con-
sider only cubic crystallites, for which n = 12 corresponding to the {111} (110) type slip systems for
FCC crystallites and n =24 for the {110} (111)+ {112} (111) slip systems for BCC crystallites.
Also for such a crystallite the identification of the substructure is obvious: choose the director vectors
g, to coincide with the principal lattice directions (cf. Mandel, 1971). The contributions of each of
the n slip systems to the rate of deformation A? or L? for a single crystallite are additive, so that after
taking symmetric and skewsymmetric parts,

& 1
DF = Y y'M_, M, =5(b,®n+n®b); (6)

s=1

s

n ) 1
we =Y e, Q, =5 (b,®n,-n®b) Q)

s=1

where a subscript s is used to denote a particular slip system. Postponing the actual determination of
the slip rates Y2 to the next subsection, let us assume that they are known in a given state. With the
orientation g of the crystallite being given in that state as well, the rotation tensor R® is known instan-
taneously and W¥* is determined immediately by (2) again. W* is interpreted now as the lattice spin.

The last step now is from a single crystallite to a polycrystal comprising a large number m of
differently oriented crystallites. As pointed out by Mandel (1982), the choice of a substructure corre-
sponding to a polycrystalline aggregate is not trivial. The seemingly obvious extension of the identi-
fication for a single crystal, by trying to define some kind of ‘average lattice’ on the basis of the current
crystal orientations, involves major complications. Instead, Mandel (1982) suggested to define the
substructure in a kinematic way: the substructure for a polycrystal is a triad of vectors that rotates with
a spin equal to the volume average of the spin of the individual lattice orientations. Formally, this def-
inition can be written as

o = WHE,, W* =(W*) = ‘l/jw*(x)dv
Vv

where W*(x) is the lattice spin at location x in the polycrystal and V is the volume of the aggregate
considered.

Having defined the substructure for a textured polycrystal in that way, the corresponding plas-
tic spin associated with texture development is immediately found from (2) as

WP = W-W* ®)

Note that this macroscopic plastic spin WP is in general not equal to the volume average (WP) of the
plastic spin within each crystallite according to (7).

It is of importance to note here that the macroscopic plastic spin thus defined, can — in prin-
ciple — be determined from experiments. Suppose that the lattice orientations within a polycrystalline
sample can be measured (e.g. by X-ray techniques) with sufficient accuracy at two nearby instants
during a deformation process. This information can then be used to compute (an average value of) the
spin (W*), and the macroscopic plastic spin follows from (8). This means that constitutive equations
for this plastic spin can be verified directly with experimental values. It should be realized though that
this hinges on the fact that this plastic spin is associated with crystallographic texture development
only, which in itself is a phenomenon that can be observed on a sample more or less directly.

Obviously, the theoretical evaluation of the volume average (W*) over a polycrystalline
aggregate is a formidable task. An approximation is obtained by the Taylor model.
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Taylor-Bishop-Hill Polycrystal Theory

Within the framework of crystal plasticity, as discussed above, the Taylor-Bishop-Hill theory
provides a practically applicable model for the plastic deformation of a polycrystalline aggregate. The
first, basic assumption made in the Taylor model is that the velocity gradient L is homogeneous within
each crystallite. It varies only with a long wavelength, much larger than the grain size; for most prac-
tical calculations, it is assumed to be equal in all m crystallites. This means that the volume average
of the lattice spin, {W*), simply reduces to a weighted average of the lattice spin Wi for the (entire)
kth crystallite, so that also the macroscopic plastic spin defined through (8) is identical to the average
plastic spin:

m m m

= wr _ 1

w*=‘l/2vkw:, W=g X VWi V= 3V, ©)
k=1 k=1 k=1

as suggested already by Mandel (1982). Here, W% is obtained from (2) after substitution of the crys-
tallite’s plastic spin W¥ according to (7), and V/, is the weight factor for crystal k.

The macroscopic plastic spin can be evaluated once the slip rates within all crystallites are
known. Given the fact that cubic crystals possess a relatively large number of possible slip systems,
the determination of the slip rates poses a well-known problem in crystal plasticity. Among the various
solutions proposed, the Taylor-Bishop-Hill approach is one of the simplest. For details on this theory
and the particular implementation used for our simulations, we refer to the paper by Van Houtte
(1988). Suffice it to note here that the critical resolved shear stress for slip according to Schmid’s law
is taken to be a material constant on each slip system; slip system hardening and latent hardening are
being neglected, and slip is also asssumed to be rate-independent.

Once the slip rates are known, the plastic spin of each crystallite can be calculated from (7).
For a particular applied velocity gradient L, the lattice spin W* and the plastic spin WP depend on the
crystal orientation. After a large strain, most crystallites will rotate to orientations for which the crystal
lattice spin W} = 0. This means that the crystal lattices do not rotate any more at ongoing deforma-
tion. For such so-called final orientations, the crystallite’s plastic spin equals the applied spin W.

Results

In this section we present some results for the macroscopic, average plastic spin for a poly-
crystalline aggregate consisting of m =294 crystallites. The initial crystal orientations constitute a
uniform coverage of Eulerian orientation space so that the aggregate represents an initially isotropic
material. The critical resolved shear stress is taken to be the same for all slip systems. The numerical
analysis is based on a time slezp Arsuchthat Ae =€ A1 = 0.05/.3, where €, is the applied effective
strain-rate defined through €, = (2/3) wrD?. A class of homogeneous 2D plane strain deformation
processes in the x;—x, plane are considered, which correspond to stationary flow as characterized by
constant components of the velocity gradient L with respect to the global Cartesian basis {e;}. For
these deformations we consider here only the W{, component of the macroscopic plastic spin accord-
ing to (9). The velocity gradient given in the insert of Fig. 2 corresponds to a deformation process
which can be envisaged by first deforming a block in simple shear along the x;—direction to a shear
strain y and then deforming it by planar isochoric stretching (“rolling”) to a stretch A in the x,—direc-
tion. The parameter x is a measure of the amount of rolling relative to the amount of shearing. Pure
rolling corresponds to k — *ee while Kk = 0 corresponds to pure simple shear.

Van der Giessen and Van Houtte (1991) presented some preliminary results for exactly the
same conditions. First, they showed the development of plastic spin during pure simple shear up to
shears of y = 10, for either FCC or BCC polycrystals (these results are reproduced later in Fig. 6). It was
found that initially, at y= 0, the plastic spin vanishes because of the initial isotropy, while the plastic
spin increases quickly due to texture development. In the early stages of the process, say y< 1.5, the
plastic spin is observed to be virtually identical for FCC and BCC polycrystals, but for larger shears the
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