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Preface

An exciton is an electronic excitation wave consisting of an electron-hole pair
which propagates in a nonmetallic solid. Since the pioneering research of Fren-
kel, Wannier and the Pohl group in the 1930s, a large number of experimental
and theoretical studies have been made. Due to these investigations the exciton is
now a well-established concept and the electronic structure has been clarified in
great detail.

The next subjects for investigation are, naturally, dynamical processes of
excitons such as excitation, relaxation, annihilation and molecule formation and,
in fact, many interesting phenomena have been disclosed by recent works. These
excitonic processes have been recognized to be quite important in solid-state
physics because they involve a number of basic interactions between excitons and
other elementary excitations. It is the aim of this quasi monograph to describe
these excitonic processes from both theoretical and experimental points of view.

To discuss and illustrate the excitonic processes in solids, we take a few
important and well-investigated insulating crystals as playgrounds for excitons on
which they play in a manner characteristic of each material. The selection of the
materials is made in such a way that they possess some unique properties of
excitonic processes and are adequate to cover important interactions in which
excitons are involved. In each material, excitonic processes are described in
detail from the experimental side in order to show the whole story of excitons in a
particular material. Part of this book is devoted to the theoretical description of
the excitonic processes which play particularly important roles in the materials
chosen in this book but are not necessarily restricted to these materials. The
theory is presented in a general fashion so as to cover a variety of phenomena
which have been of recent interest. :

It should be remarked that, although this book has been written through the
cooperation of five authors, the main contribution to Chap. 3 was made by Ueta,
Chaps. 5 and 6 by Kanzaki, Chaps. 7, 8, and 9 by Kobayashi, Chaps. 1 and 4 by
Toyozawa and Chap. 2 by Hanamura.

The authors wish to express their gratitude to all of their colleagues for
collaboration and discussions at various stages of their researches on excitons.
One of the authors (MU) would like to acknowledge the assistance of Prof.
T. Itoh and Dr. Y. Nozue in completing the manuscript. The authors thank the
original authors of the figures used in this book who kindly gave permission to
reproduce them. Thanks are also due to the Physical Society of Japan, The
American Physical Society, The Institute of Physics, Progress of Theoretical
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Physics, Akademie-Verlag, International Union of Crystallography, North-Hol-
land Publishing Company, Pergamon Press Ltd. and Plenum Press for granting
them permission for the reproduction of the figures. The authors are grateful to
Miss Chikako Okada, Miss Takako Tokanai, Miss Yoko Kobayashi and Dr.
Atsuko Sumi for typing the manuscript. Finally the authors should like to
acknowledge the constant help and encouragement furnished by their wives,
Chisako Ueta, Kiyo Kanzaki, Rei Kobayashi, Asako Toyozawa and Toshiko
Hanamura without whose aid the work on excitons, on which this book is based,
would probably not have been done.

Tokyo and Sendai 1984 M. Ueta, H. Kanzaki, K. Kobayashi,
Y. Toyozawa, E. Hanamura
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1. Introduction

This first chapter introduces the basic concept of an exciton as an elementary
excitation in a many-electron system of an insulator. Various kinds of interaction
associated with translational and internal motions of this composite particle, such
as electron-hole Coulomb and exchange interactions, spin-orbit interactions and
interatomic or intermolecular overlap and dipole-dipole energies, are described
with particular attention to their interplay and to their reflection in the optical
spectra. The coupled mode of light and electronic polarization waves, whose
quanta are a photon and an exciton, respectively, is described in terms of a
polariton picture, whereby the optical response of the bulk is related to that of
the surface, with additional boundary conditions in the case of spatial dispersion.
This chapter provides the conceptual basis for more dynamical aspects of the
excitons to be described in later chapters.

1.1 The Ground State of Many-Body Systems and the Modes
of Excitation

Which kind of ground state is preferred by a system consisting of a great number
of like particles interacting with each other has always been a matter of funda-
mental interest; yet a question difficult to answer in a general way. The ground
state should be a perfectly ordered state in the sense of the third law of thermody-
namics that the entropy of a macroscopic system approaches zero with vanishing
temperature [1.1]. Two typical ways of perfect ordering are a periodic array in
r-space and condensation in k-space. The former is preferred when the interparti-
cle interaction dominates the kinetic energy — atoms (except He) and molecules
form crystalline lattices while low-density electrons form a Wigner lattice. The
latter is preferred in the opposite situation — outer electrons in a solid are Fermi-
condensed in the Bloch band because of their large interatomic transfer energy
and the small pseudopotential from atoms and other electrons, while ‘He atoms,
the lightest closed-shell atoms, become Bose-condensed in k-space. It should be
noted, however, that many-particle systems in general can take ground states
with much more varied and intriguing features [1.2] than the two limiting situa-
tions mentioned above.

Once the ground state is known, the excited states are next to be considered.
We have two aims in doing this. Firstly, the responses of the system to small
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external fields are described in terms of virtual and/or real excitations of the
system. Secondly, if the assumed ground state is an approximate or an inappro-
priate one, one has to consider mixing of some of the excited states to get the true
ground state. This state may turn out to be significantly different from the one
initially conceived, perhaps eventually involving symmetry breaking such as in
super-structure formation.

The modes of low-lying excitations of a many-particle system can be classified
into individual and collective excitations [1.3, 4]. The individual excitation in
r-space is exemplified by the formation of a Frenkel defect in the perfect crystal
lattice, while that in k-space is typified by the excitation of an electron across the
Fermi energy (metal) or the band gap (insulator). The collective motions can
have arbitrarily small amplitude within the classical mechanics, and the potential
energy for such small displacements of collective coordinates from their equilib-
rium points can be approximated by a quadratic form, diagonalization of which
gives a set of non interacting harmonic oscillators each with angular frequency w;. .
By quantizing them, one finds that the low-lying excited states of the collective
motions can be described in terms of an integral number 7, of energy quanta 7w,
for each mode j:

E = Ynmho, (n;=0,1,2,...). (1.1)
]

This system behaves as though it consists of an assemblage of noninteracting
fictitious particles with energy Aw; (j = 1, 2,...), which are called the elemen-
tary excitations. For example, a collective oscillation of atoms in solids is a lattice
vibration, whose energy quantum is called a phonon. The collective oscillation of
charge density in a system consisting of mobile electrons and ions (e.g., a metal
and an ionized gas) is known as a plasma oscillation with a plasmon for its energy
quantum. The deviation of spin orientation from its ordered state in a magnetic
material propagates from site to site as a wave, which is called a spin wave; its
energy quantum being a magnon.

The collective motions are not completely independent of the individual
motions; on the contrary, the former are superpositions of the latter. The former
claim their own significance as better eigenmodes of motion in the many-particle
system than the latter, when the interparticle interaction is not small. To be more
exact, the interaction can be partly incorporated, as a sort of average, into the
effective field (e.g., the Hartree-Fock field for the electrons in the Bloch band)
which acts upon the particles themselves thus governing their individual motion.
The fluctuating part of the interaction is responsible for the collective motion on
the one hand and for the interparticle correlation on the other. For example, the
plasma oscillation in the Fermi-degenerate electrons in a metal has a much higher
frequency than the individual excitations (whose energy range starts from zero)
across the Fermi energy although the former is nothing but a superposition of the
latter; the long-range fluctuating part of the Coulomb repulsion gives rise to the
plasma oscillation and at the same time to the interelectron correlation which
amounts to a screening of the repulsion into a short-range one [1.3].



1.2 Electronic Excitation in Insulators and the Wannier-Mott Exciton 3

1.2 Electronic Excitation in Insulators and the Wannier-Mott
Exciton

The situation is different in insulators in which the individual electronic excita-
tions have a lower bound ¢, - the band-gap energy. Let us assume the conduction
(c) and valence (v) bands to be parabolic with isotropic effective masses m. and
my, with a minimum and maximum, respectively, at k = 0:

hk?
Sc(k) - EC(O) + 2me ’
. 1.2)
Ev(k) = SC(O) — 89 _z—n’lh .

One can then write the energy for one-electron excitation: (v, k — K) — (c, k) as
[1.5]

thrZ
e.(k) —e,(k — K) = g,(K) + 2 = E(k,K) , .
. (1.3)
g(K)=¢4 + S where
M=m+m,, up'=m'+mi", (1.4)
— _ m. :
K =k i K. (1.5)

Here K and k' represent the wave vectors for the translational (center-of-mass)
and the relative motions, respectively, of the electron in the conduction band (e)
and the hole in the valence band (h), as is obvious from their associated masses M
and u (reduced mass) given by (1.4).

The Coulomb potentials from all the nuclei and other electrons have been
incorporated into the periodic potential with which we solve for the one electron
states ¢.(k), €,(k), . . . self-consistently, assuming the ground state in which elec-
trons fill the core and the valence bands. In the excited state (1.3) where we have
a pair of e and h, there should be attractive Coulomb and repulsive exchange
interactions between them. The former is given by —eer if the e-h distance
r = |r, — ry| is large compared to the lattice constant a,, since the crystal lattice
consisting of electrons and nuclei can then be regarded quasi-macroscopically as a
polarizable medium specified by a dielectric constant € [1.6]. From (1.3), the e-h
relative motion is subject to the Schrédinger equation (k' — -iV,) [1.7]

2 2
(- % - ) n® = ) (16)
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of the hydrogen atom type, which has the discrete and continuous eigenvalues

b
ECX

Enlm=__nz_ (ﬂ=1,2,...),

(1.7)
£ = + ﬁ
kim 2# L]

The e-h binding energy E?, and the effective Bohr radius ag in the 1s (n = 1,
[ = m = 0) state are given by rescaling those of the hydrogen atom (H):

4 2 h2 1 ﬂ
Eb, =Ry =L _=-_¢ - =—(—)R , 1.8
¢ ¥ 2e’H? 2eag 2,[1&123 €? \my H (1.8)
en’ m
ag = F = (TO)QH 3 (19)

where my, is the true mass of an electron.
The excitation energy, with the e-h Coulomb attraction taken into account, is

then given by
E;_’K = Eg(K) + ¢ (110)

since the translational wave vector K remains a constant of motion. The discrete
state A = (n, [, m) represents a bound pair of e and h which is called an exciton.
The whole spectrum of an e-h pair excitation is shown schematically in Fig. 1.1as
a function of K. Since the wave vector of a photon in this region of excitation
energy is negligibly small compared to the reciprocal lattice vector, only those

Fig. 1.1. Excitation energy of an e-h pair as a func-
tion of translational wave vector K

~
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excited states with K = 0 contribute to the optical absorption spectra, which
therefore consists of a series of discrete lines followed by the ionization con-
tinuum. i

The above description of an exciton is based on two approximations: the
effective mass approximation [the neglection of terms higher than quadratic in
(1.2)] [1.7] and the dielectric continuum model for Coulomb screening (the use of
macroscopic ¢). They are justified only when ag > a,. Such an exciton is specifi-
cally called a Wannier-Mott exciton. This situation is well realized in narrow-gap
semiconductors which usually have large €(> 1) and small u(< my).

1.3 The Frenkel Exciton

With narrow Bloch bands and hence with large effective masses m, and m,, as in
molecular crystals (small intermolecular overlapping), and/or with a smaller
dielectric constant € as realized in large band gap crystals, the relative motion
wavefunction y, (r) of the lowest exciton may be so localized that e and h are
almost located on the same atom or molecule. One can then consider the exciton
to be the intraatomic or intramolecular excitation energy which propagates
through the lattice with wave vector K. This was in fact the model of an exciton as
first conceived by Frenkel [1.8].

Let us consider, for simplicity, N identical molecules, each with one spinless
electron, arrayed in a crystal lattice. We denote by @, the Slater determinant of
the electronic configuration in which only the nth molecule at R, is in the excited
state a.(r, — R,) with excitation energy &, all other molecules (n’) being in the
ground state: a,(r,, — R,). Due to the intermolecular interactions, the excitation
energy can propagate from site to site, resulting in the eigenstate:

V= N2 Z [CXp (lK Rn)] D, , (111)

similar in form to the tight-binding model for a one-electron Bloch state. In
contrast to the latter case, however, the excitation energy can be transferred even
without the intermolecular overlap: the Coulomb interaction v, = €|r, — 1,
between the electrons on the nth and the mth molecules gives the matrix element

X e—zlav(rn_Rn)ac(rm_Rm) = W(an) ’ (112)

Irn_rm

under the assumption of intermolecular orthogonality. The multiple expansion of
V.. gives the dipole-dipole interaction

2 3 . anZ
Hom ~ D@y = B 3Rl (113
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to be predominant at long distances R,,,, = |R, — R,,|, where u is the intramolecu-
lar transition dipole moment:

u=[at(r)(-er)a,(r)dr. (1.14)

The energy of the Frenkel exciton state (1.11) is then given by

Ex=¢+4+ ) D(R,)exp(-iK'R,)=¢e+ Dg. (1.15)
n(#0)

Replacing the sum over distant molecules by integrals, as is justified for Ka, < 1,
one finds

2
Dy = const. ——N (| 2 - 3 1n - K ) (1.16)
K?
where N, is the number of molecules per unit volume. Equation (1.16) is singular
at K = 0; the longitudinal exciton (K||u) has higher energy than the transverse
one (K L u) by 4wNyu?. This difference originates from the depolarizing electric
field due to the longitudinal component of the electronic polarization wave. The

exciton is nothing but a quantum of this classical polarization wave.

1.4 The General Case

We have so far considered the simplest systems in the two limiting situations
(a 2 ap). In the realistic case, we have first to consider the spin and orbital
degeneracies of the bands which we denote by v, v',... and u, g, ... for the
conduction and the valence bands, respectively. Secondly, we have to introduce a
discrete function F(R;) for the e-h relative motion with finite spatial extension.
An exciton state with translational wave vector K can then be written as

WAK = N_Uz Z ; Z Z [exp (IK ' Rm)]F (Rl) (pm+lm ’ (117)
m v ou
LYLLIF“R)P=1, (1.18)
v ou
where @7/, denotes the Slater determinant of the configuration in which the

electron in the atomic or Wannier state a, (r — R,,) is excited into a,(r — R,). The
associated Bloch states

wi(r) = N7 Z exp (ik - R,,)]a,(r - R,,) (1.19)
constitute the one-electron energy matrix for the degenerate valence band:
e (k) , (1.20)

and the same for the conduction bands.



