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Preface to the New Edition

This book consists of two parts, to be called Part I and Part II. Part I,
Chapters 1 through 5, is essentially a new edition of Kai Lai Chung’s Lec-
tures from Markov Processes to Brownian Motion (1982). He has corrected a
number of misprints in the original edition, and has inserted a few references
and remarks, of which he says, “The latter must be regarded as randomly
selected since twenty-some years is a long time to retrace steps . ..” This part
introduces strong Markov processes and their potential theory. In particular,
it studies Brownian motion, and shows how it generates classical potential
theory.

Part II, Chapters 6 through 15, began life as a set of notes for a series
of lectures on time reversal and duality given at the University of Paris. I
originally planned to add the essential parts of these notes to this edition to
show how the reversal of time—the retracing of steps—explained so much
about Markov processes and their potential theory. But like many others, I
learned that the inessential parts of a cherished manuscript form at most a
fuzzy empty set, while the essential parts include everything that should have
been in the original, even if it wasn’t. In short, this, like Topsy, just grow’d.

Indeed, reversal and duality are best understood in light of Ray processes
and the Ray—Knight compactification. But it is fitting that a study of symmetry
be symmetrical itself, so once I had included the Ray compactification, I had
to include its mirror image, the Martin boundary. This was followed by a host
of examples, remarks and theorems to show how these new ideas influence
the theory and practice developed in the first part. The result was the present
Part II.

In a sense, Part II deals with the same subjects as Part I, but more narrowly:
using Part I for a general understanding, we are free to focus on the effects of
time reversal, duality, and time-symmetry on potential theory. Certain theo-
rems in Part I are re-proved in Part II under slightly weaker hypotheses. This
is not because I want to generalize the theorems, but because I want to show
them in a different light: the proofs in Part II are quite different from those of
Part I.

The class of Markov processes in Part I is slightly less general than it first
appears—it does not include all Markov chains, for example, nor is it closed
under time-reversal. Thus, after setting the stage with preliminary sections on
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general theory and Markov chains, I introduce Ray processes, which are in a
sense the Platonic ideals of Markov processes: any nice Markov process with
stationary transition probabilities has its ideal Ray process, and the two are
connected by a procedure called Ray—Knight compactification. Ray processes
introduce branching points. These are customarily ignored in the Markov pro-
cess theory, but they arise naturally when one considers boundary conditions.
Although they may initially seem to complicate the theory, they clarify some
important things, such as the classification of stopping times and path dis-
continuities, and they help to explain some otherwise-mysterious behavior.
I consider them an essential part of the subject.

The key tools in this study are the fundamental theorem of time-reversal in
§10 and Doob’s theory of i-transforms in §11. These figure systematically in
the proofs.

We study probabilistic potential theory under duality hypotheses. In one
sense, duality and time-reversal are two aspects of the same phenomenon:
the reversed process is an /-transform of the dual. In another, deeper sense,
discussed in §15, duality simply implies the existence of a cofine topology. In
any case, duality is a natural setting for a study of time-symmetry.

One of the themes of Part Il is that the strength and elegance of the potential
theory increase as the process and its dual become more alike, i.e. as the process
becomes more symmetric. However, some say that near-symmetry is beautiful
but perfect symmetry is bland, and I feel that the most interesting theory arises
when the process and its dual are nearly alike, but when there is still some
tension between symmetry and assymmetry.

Another theme is the importance of left limits, particularly at the lifetime.
(The whole structure of the Martin boundary can be viewed as an attempt
to understand this quantity in depth.) This leads to an interplay between the
strong Markov property, the moderate Markov property, and time-reversal.
Watch for it.

I have included several chapters dubbed “Fireside chats” on subjects which
are relevant and illuminating, but not strictly necessary for the rest of the
material. They contain careful statements of results, but no rigorous proofs.
The treatment is informal and is more concerned with why the results should
be true rather than why they are true. The reader can treat these as extended
remarks, or simply ignore them entirely.

Finally, Part II uses the same notation and terminology as Part I, with a few
notable exceptions: for instance, “optional times” become “stopping times”
and “superaveraging functions” become “supermedian functions.” There is no
deep reason for this, other than a misjudgement of the difficulty of changing
these in the final computer file by a simple search-and-replace. It should not
cause the reader any problems.

John B. Walsh
Vancouver, B.C., Canada
July 4, 2004



Preface to the First Edition

This book evolved from several stacks of lecture notes written over a decade
and given in classes at slightly varying levels. In transforming the over-
lapping material into a book, I aimed at presenting some of the best features
of the subject with a minimum of prerequisites and technicalities. (Needless
to say, one man’s technicality is another’s professionalism.) But a text frozen
in print does not allow for the latitude of the classroom; and the tendency
to expand becomes harder to curb without the constraints of time and
audience. The result is that this volume contains more topics and details
than I had intended, but I hope the forest is still visible with the trees.

The book begins at the beginning with the Markov property, followed
quickly by the introduction of optional times and martingales. These three
topics in the discrete parameter setting are fully discussed in my book 4
Course In Probability Theory (second edition, Academic Press, 1974)." The
latter will be referred to throughout this book as the Course, and may be
considered as a general background; its specific use is limited to the mate-
rial on discrete parameter martingale theory cited in §1.4. Apart from this
and some dispensable references to Markov chains as examples, the book
is self-contained. However, there are a very few results which are explained
and used, but not proved here, the first instance being the theorem on pro-
jection in §1.6. The fundamental regularity properties of a Markov process
having a Feller transition semigroup are established in Chapter 2, together
with certain measurability questions which must be faced. Chapter 3 con-
tains the basic theory as formulated by Hunt, including some special topics
in the last three sections. Elements of a potential theory accompany the
development, but a proper treatment would require the setting up of dual
structures. Instead, the relevant circle of ideas is given a new departure in
Chapter 5. Chapter 4 grew out of a short compendium as a particularly
telling example, and Chapter 5 is a splinter from unincorporated sections
of Chapter 4. The venerable theory of Brownian motion is so well embel-
lished and ramified that once begun it is hard to know where to stop. In
the end I have let my own propensity and capability make the choice. Thus
the last three sections of the book treat several recent developments which
have engaged me lately. They are included here with the hope of inducing
further work in such fascinating old-and-new themes as equilibrium,
energy, and reversibility.

*Third edition, 2001.
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I used both the Notes and Exercises as proper non-trivial extensions of
the text. In the Notes a number of regretably omitted topics are mentioned,
and related to the text as a sort of guide to supplementary reading. In the
Exercises there are many alternative proofs, important corollaries and
examples that the reader will do well not to overlook.

The manuscript was prepared over a span of time apparently too long
for me to maintain a uniform style and consistent notation. For instance,
who knows whether “‘semipolar” should be spelled with or without a hyphen?
And if both |x| and ||x|| are used to denote the same thing, does it really
matter? Certain casual remarks and repetitions are also left in place, as they
are permissible, indeed desirable, in lectures. Despite considerable pains on
the part of several readers, it is perhaps too much to hope that no blunders
remain undetected, especially among the exercises. I have often made a
point, when assigning homework problems in class, to say that the correc-
tion of any inaccurate statement should be regarded as part of the exercise.
This is of course not a defense for mistakes but merely offered as prior
consolation.

Many people helped me with the task. To begin with, my first formal
set of notes, contained in five folio-size, lined, students’ copybooks, was
prepared for a semester course given at the Eidgenossiche Technische
Hochschule in the spring of 1970. My family has kept fond memories of
a pleasant sojourn in a Swiss house in the great city of Ziirich, and [
should like to take this belated occasion to thank our hospitable hosts. An-
other set of notes (including the lectures given by Doob mentioned in §4.5)
was taken during 1971-2 by Harry Guess, who was kind enough to send
me a copy. Wu Rong, a visiting scholar from China, read the draft and the
galley proofs, and checked out many exercises. The comments by R. Getoor,
N. Falkner, and Liao Ming led to some final alterations. Most of the manu-
script was typed by Mrs. Gail Stein, who also typed some of my other
books. Mrs. Charlotte Crabtree, Mrs. Priscilla Feigen, and my daughter
Marilda did some of the revisions. I am grateful to the National Science
Foundation for its support of my research, some of which went into this
book.

August 1981 Kai Lai Chung
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Chapter 1

Markov Process

1.1. Markov Property

We begin by describing a general Markov process running on continuous
time and living in a topological space. The time parameter is the set of
positive numbers, considered at first as just a linearly ordered set of indices.
In the discrete case this is the set of positive integers and the corresponding
discussion is given in Chapter 9 of the Course. Thus some of the proofs below
are the same as for the discrete case. Only later when properties of sample
functions are introduced will the continuity of time play an essential role.
As for the living space we deal with a general one because topological
properties of sets such as “open” and “compact” will be much used while
specific Euclidean notions such as “interval” and “sphere” do not come into
question until much later.

We must introduce some new terminology and notation, but we will do
this gradually as the need arises. Mathematical terms which have been defined
in the Course will be taken for granted, together with the usual symbols to
denote them. The reader can locate these through the Index of the Course.
But we will repeat certain basic definitions with perhaps slight modifications.

Let (Q, #, P) be a probability space. Let

T = [0, 0).

Let E be a locally compact separable metric space; and let & be the minimal
Borel field in E containing all the open sets. The reader is referred to any
standard text on real analysis for simple topological notions. Since the
Euclidean space R? of any dimension d is a well known particular case of
an E, the reader may content himself with thinking of R? while reading
about E, which is not a bad practice in the learning process.

ForeachteT, let

Xi(w) = X(t,w)
be a function from Q to E such that

X7 (&) =7



2 1. Markov Process

This will be written as

X, e F/6;

and we say that X, is a random variable taking values in (E, &). For E = R},
& = #', this reduces to the familiar notion of a real random variable. Now
any family {X,,t € T} is called a stochastic process. In this generality the
notion is of course not very interesting. Special classes of stochastic pro-
cesses are defined by imposing certain conditions on the random variables
X,, through their joint or conditional distributions. Such conditions have
been formulated by pure and applied mathematicians on a variety of grounds.
By far the most important and developed is the class of Markov processes
that we are going to study.

Borel field is also called o-field or g-algebra. As a general notation, for
any family of random variables {Z,, « € 4}, we will denote the o-field
generated by it by 6(Z,, « € A). Now we put specifically

F=0(X;,s€[0,1]); Fi=0(X, se[t,0))

Intuitively, an event in &7 is determined by the behavior of the process
{X,} up to the time ¢; an event in &, by its behavior after ¢. Thus they repre-
sent respectively the “past” and “future” relative to the “present” instant t.
For technical reasons, it is convenient to enlarge the past, as follows.

Let {#,, t € T} be a family of o-fields of sets in %, such that

(@) ifs <t then #, = #,;
(b) foreacht X,e %,

Property (a) is expressed by saying that “{%,} is increasing”; property
(b) by saying that “{X,} is adapted to {#,}”. Clearly the family {F?} satisfies
both conditions and is the minimal such family in the obvious sense. Other
instances of {#,} will appear soon. The general definition of a Markov
process involves {Z,} as well as {X,}.

Definition. {X,, #,, t € T} is a Markov process iff one of the following equiv-
alent conditions is satisfied:

(i) VteT, Ae #,Be F,:

P(AmB[X,)=P(A|X,)P(B|X,).
(i) VieT,Be %,
P(B|#,) = P(B| X))
(i) VteT, Ae %,
P(A|7) = P(A|X)).

The reader is reminded that a conditional probability or expectation is an
equivalence class of random variables with respect to the measure P. The
equations above are all to be taken in this sense.
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We shall use the two basic properties of conditional expectations, for
arbitrary o-fields 4, 4,, 4, and integrable random variables Y and Z:

(@) If Y € %, then E{YZ|%} = YE{Z|%};

(b)If9, = ¥,, then

E{E(Y|%,)|9,} = E{E(Y|%,)|%,} = E{Y|%,}.

See Chapter 9 of Course.
Let us prove the equivalence of (i), (ii) and (iii). Assume that (i) holds, we
will deduce (ii) in the following form. For each 4 € &, and B € &, we have

E{1,P(B|X,)} = P(A N B). (1)
Now the left member of (1) is equal to

E{E[1,P(B|X)]|X,} = E{P(4| X )P(B| X,)}
= E{P(4 ~ B|X,)} = P(A N B).

Symmetrically, we have

E{1,P(4]X)} = P(4 ~ B),
which implies (iii).
Conversely, to show for instance that (ii) implies (i), we have
P(A N B|X)=E{E(1, 15|%)| X}
= E{1,P(B|#)|X.} = E{1,P(B| X)| X}
= P(B|X)E{1,]|X,} = P(B|X)P(4| X)).
From here on we shall often omit such qualifying phrases as “Vt € T”. As
a general notation, we denote by b¥ the class of bounded real-valued
%-measurable functions; by C, the class of continuous functions on E with
compact supports.

Form (ii) of the Markov property is the most useful one and it is equivalent
to any of the following:

(ia) VYebF,:
E{Y|#} = E{Y|X}.
(iib) Yux>t¢, febé:
E{f(X)|#} = E{f(X.)| X.}.
(lic)c VYux=t¢, feClE):
E{f(X.)| 7} = E{f(X.,)| X.}.
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It is obvious that each of these conditions is weaker than the preceding
one. To show the reverse implications we state two lemmas. As a rule, a
self-evident qualifier “nonempty” for a set will be omitted as in the following
proposition.

Lemma 1. For each open set G, there exists a sequence of functions {f,} in C,
such that

lim1 f, = 1.

This is an easy consequence of our topological assumption on E, and gives
the reader a good opportunity to review his knowledge of such things.

Lemma 2. Let S be an arbitrary space and D a class of subsets of S. D is
closed under finite intersections. Let C be a class of subsets of S such that
SeC and D = C. Furthermore suppose that C has the Jollowing closure
properties:

(@ if A,eCand A, < A, forn> 1, then Ux4,eC;
(b) f AcBand Ac C,BeC,thenB— AeC.

Then C > (D).

Here as a general notation ¢(D) is the o-field generated by the class of
sets D. Lemma 2 is Dynkin’s form of the “monotone class theorem”; the
proofis similar to Theorem 2.1.2 of Course, and is given as an exercise there.
The reader should also figure out why the cited theorem cannot be applied
directly in what follows.

Let us now prove that (iic) implies (iib). Using the notation of Lemma 1,
we have by (lic)

E{f{X)|Z} = E{f{X.)|X,}.
Letting n — co we obtain by monotone convergence
P{X,eG|#} = P{X,e G|X}. (2)

Now apply Lemma 2 to the space E. Let D be the class of open sets, C the
class of sets A4 satisfying

P{X,e A|F} = P{X,c A|X,}. 3)

Of course D is closed under finite intersections, and D = C by (2). The other
properties required of C are simple consequences of the fact that each member
of (3), as function of A, acts like a probability measure; see p. 301 of Course
for a discussion. Hence we have C o & by Lemma 2, which means that (3)
is true for each 4 in &, or again that (iib) is true for f = 1, 4 € & The class
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of f for which (iib) is true is closed under addition, multiplication by a
constant, and monotone convergence. Hence it includes h& by a standard
approximation. [ We may invoke here Problem 11 in §2.1 of Course.]

To prove that (iib) implies (iia), we consider first

Y - fl(Xul) o fn(Xu,.)

where t <u; <---<u,and f;eb& for1 <j < n Forsucha Y withn =1,
(i1a) is just (iib). To make induction from n — 1 to n, we write

E{[L fj(Xu_,)l%} - E{E[U fj(Xuj)lg«;n_,} yf,}

n—1
= E{ﬂ [XDE[flX )| Z -] l%} 4)
j=1

Now we have by (iib)

E[f(X.)|Z.

un-1] = E[fulX.)| X

wn-1) = 9(Xu,_))

for some g € b&. Substituting this into the above and using the induction
hypothesis with f,_, - g taking the place of f, _;, we see that the last term in
(4) is equal to

Xt}

e{TT secetlz, Jixf = s{e| 11 7ol |

-{fl ety

since X, € &, _,. This completes the induction.

Now let D be the class of subsets of @ of the form ()}, {X,, € B;} with
the u;’s as before and B;€ &. Then D is closed under finite intersections.
Let C be the class of subsets A of Q such that

P{A|F} = P{A|X,).

Then Q € C, D = C and C has the properties (a) and (b) in Lemma 2. Hence
by Lemma 2, C o ¢(D) which is just %;. Thus (iia) is true for any indicator
Y € #, [that is (ii)], and so also for any Y € b#; by approximations. The
equivalence of (iia), (iib), (iic), and (ii), is completely proved.

Finally, (iic) is equivalent to the following: for arbitrary integers n > 1
and0 <t, < - -t, <t <u,and f € C(E) we have

E{f(X)| X, X, ..., X0} = E{f(X.)| X.}. ©)



