

PROGRESS IN HETEROCYCLIC CHEMISTRY

VOLUME 16

G.W. Gribble & J.A. Joule

Functional Equations in Applied Sciences

Enrique Castillo UNIVERSIDAD DE CANTABRIA SANTANDER, SPAIN

Andrés Iglesias UNIVERSIDAD DE CANTABRIA SANTANDER, SPAIN

Reyes Ruíz-Cobo UNIVERSIDAD DE CANTABRIA SANTANDER, SPAIN

2005 ELSEVIER

Amsterdam – Boston – Heidelberg – London – New York – Oxford Paris – San Diego – San Francisco – Singapore – Sydney – Tokyo ELSEVIER B.V. Sara Burgerhartstraat 25 P.O. Box 211, 1000 AE Amsterdam The Netherlands

ELSEVIER Inc. 525 B Street, Suite 1900 San Diego, CA 92101-4495

ELSEVIER Ltd The Boulevard, Langford Lane Kidlington, Oxford OX5 IGB UK ELSEVIER Ltd 84 Theobalds Road London WC1X 8RR

© 2005 Elsevier B.V. All rights reserved.

This work is protected under copyright by Elsevier B.V., and the following terms and conditions apply to its use:

Photocopying

Single photocopies of single chapters may be made for personal use as allowed by national copyright laws. Permission of the Publisher and payment of a fee is required for all other photocopying, including multiple or systematic copying, copying for advertising or promotional purposes, resale, and all forms of document delivery. Special rates are available for educational institutions that wish to make photocopies for non-profit educational classroom use.

Permissions may be sought directly from Elsevier's Rights Department in Oxford, UK: phone (+44) 1865 843830, fax (+44) 1865 853333, e-mail: permissions@elsevier.com. Requests may also be completed on-line via the Elsevier homepage (http://www.elsevier.com/locate/permissions).

In the USA, users may clear permissions and make payments through the Copyright Clearance Center, Inc., 222 Rosewood Drive. Danvers, MA 01923, USA; phone: (+1) (978) 7508400, fax: (+1) (978) 7504744, and in the UK through the Copyright Licensing Agency Rapid Clearance Service (CLARCS), 90 Tottenham Court Road, London WIP 0LP, UK; phone: (+44) 20 7631 5555; fax: (+44) 20 7631 5500. Other countries may have a local reprographic rights agency for payments.

Derivative Works

Tables of contents may be reproduced for internal circulation, but permission of the Publisher is required for external resale or distribution of such material. Permission of the Publisher is required for all other derivative works, including compilations and translations.

Electronic Storage or Usage

Permission of the Publisher is required to store or use electronically any material contained in this work, including any chapter or part of a chapter.

Except as outlined above, no part of this work may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without prior written permission of the Publisher.

Address permissions requests to: Elsevier's Rights Department, at the fax and e-mail addresses noted above.

Notice

No responsibility is assumed by the Publisher for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions or ideas contained in the material herein. Because of rapid advances in the medical sciences, in particular, independent verification of diagnoses and drug dosages should be made.

First edition 2005

Library of Congress Cataloging in Publication Data
A catalog record is available from the Library of Congress.

British Library Cataloguing in Publication Data A catalogue record is available from the British Library.

ISBN: 0-444-51788-x ISSN (Series): 0076-5392

The paper used in this publication meets the requirements of ANSI/NISO Z39.48-1992 (Permanence of Paper). Transferred to digital printing 2007.

Working together to grow libraries in developing countries

www.elsevier.com | www.bookaid.org | www.sabre.org

ELSEVIER

BOOK AID International

Sabre Foundation

Functional Equations in Applied Sciences

This is volume 199 in MATHEMATICS IN SCIENCE AND ENGINEERING Edited by C.K. Chui, *Stanford University*

A list of recent titles in this series appears at the end of this volume.

此为试读,需要完整PDF请访问: www.ertongbook.com

DEDICATION

To Janos Aczél with admiration.

Note from the Editor

Founded about four decades ago by the visionary distinguished mathematician, the late Richard Bellman, this "red series" Mathematics in Science and Engineering (MISE) has the entrepreneurial tradition of being one of the very first to publish interesting monographs of mathematical topics that may have the potential to make a significant impact to the advancement of sciences and engineering. Since the unfortunate early departure of Professor Bellman, a lot has been happening in mathematics that is beyond the fascination of solutions of "Big Problems" and settlement of well-known conjectures. Various exciting research areas and directions that have more direct applications in the scientific and engineering fields have been introduced. Even the tradition of pursuing individual mathematical research has gradually been adapting to the more common way of carrying out collaborative work in other scientific disciplines. Indeed, it has been a very interesting period of changes, but these changes are both natural and necessary.

The invention of semiconductors, integrated circuits (IC), as well as the exponential rate of technological advancement in IC functionalities and "chip" size, called Moore's law, has been the core and source of this "industrial revolution." Most notably, the unbelievable escalation in computing power, along with the most significant miniaturization of computing devices, not only leads to rapid advancement of all areas in sciences and engineering, but also becomes the source of creating new fields and research directions. At the same time, the tremendous IC capabilities have also significantly advanced such technologies as intelligent sensors, which, in turn, rely on computing. The enormous computing power has also played the key role in advancement and creation of new fields and new directions in other subject areas beyond the traditional science and engineering subjects, including economics, commerce, etc. Hence, the scope of science and engineering applications for MISE, as originally envisioned by Professor Bellman, is to be broadened accordingly as well.

In taking over the editorship of this book series of MISE from Professor William Ames, I am committed to preserving the entrepreneurial spirit of the founder, Professor Bellman, by encouraging publication of mathematics monographs that have the potential to make an impact on the advancement of sciences and engineering technologies, now under a broader scope. It is still the "red series", only with a new artistic design to reflect the closer and more direct relationship between the advancement of mathematics and that of other scientific and engineering fields to be interpreted in broader horizons. We welcome submission of book proposals and manuscripts from all fellow mathematical scientists who share a similar vision of MISE. We need our readers' support to make a lasting impact on the advancement of sciences and engineering technologies.

Charles Chui Editor-in-Chief Stanford, California July, 2004

Note from the Publisher

Having been established in the 1960's by Academic Press, the *Mathematics in Science and Engineering*, "red series", became well-known under the leadership of the founding editor Richard Bellman, many pioneering works being produced.

Almost two hundred volumes were published, up to volume 198 by Igor Podlubny in November 1998, the Editor-in-Chief at this stage being Professor William Ames at Georgia Tech.

After the acquisition of Harcourt General by Elsevier in 2001, which included Academic Press, responsibility for publication of the "red series" passed from the San Diego office of the former AP to Elsevier in Amsterdam, as part of the merging of the two individual publishing programs.

Following the completion of the detailed merger, we are very happy to announce the continuation of the MISE "red series" under the editorship of Prof. Charles Chui, Stanford, USA.

It is our intention to publish around 3 volumes per year, of the highest level of mathematical sciences scholarship, starting with the present vol. 199 by Castillo, Iglesias & Ruíz-Cobo

Keith Jones
Publisher
PMCA-- Physics, Mathematics, Computer Science & Astronomy
Elsevier

Preface

Functional equations is one of the most powerful and beautiful fields of Mathematics we have encountered in our professional life. It was during the summer of 1983, on the occasion of a stay at the ETH (Zürich), when E. Castillo together with A. Fernández-Canteli discovered for the first time the real importance of functional equations. We were trying to model the influence of length and stress range on the fatigue life of longitudinal elements and, when analyzing the inconsistencies of some tentative models, we found a compatibility equation written in terms of a functional equation. Immediately, the 1966 Aczél book on functional equations came to our minds (two or three years earlier, somebody in our library had ordered the book and so it was only by chance that we had the opportunity of taking a look at it without realizing, at first glance, its real importance, yet noting that some powerful methods were behind it). Since then, we have completely changed our minds and incorporated the functional equations' philosophy and techniques to our daily procedures. Even though many years were required to find our first functional equation, many others have appeared since then in our work, and, in fact, today we cannot think of building models or stating problems without using functional equations.

Our experience is that model building in science and engineering is frequently performed based on selecting simple and easily tractable equations that seem to reproduce reality to a given quality level. However, on many occasions these models exhibit technical failures or inconsistencies, such as those we discovered in our fatigue models when we obtained the compatibility equation, and which make them unacceptable. Functional equations is one of the main tools that prevent arbitrariness and allow a rigorous and consistent selection and design of models. In fact, conditions required by many models to be adequate replicas of reality can be written as functional equations.

Functional equations arise in many fields of Applied Science, such as Mechanics, Geometry, Statistics, Hydraulics, Economics, Engineering, etc. However, though the theory of functional equations is very old, not only techni-

xii Preface

cians but many mathematicians are still unaware of the power of this important field of Mathematics. As J. Aczél and J. Dhombres indicate in the preface of their book: "from their very beginnings, functional equations arose from applications, were developed mostly for the sake of applications and, indeed, were applied quite intensively as soon as they were developed". However, most of the recent advances in the theory of functional equations have been published in mathematical journals which are not written in a language that many engineers and scientists can easily understand. This fact, which is common to many other areas of Mathematics, has been the reason why many engineers and applied scientists are still unaware of a long list of these advances and, consequently, they have not incorporated common functional equation techniques into their daily procedures.

Our experience with functional equations was so positive and relevant to applications that we became engrossed in this still relatively unknown field of Mathematics. Impressed by its importance and wishing to share with others this discovery, we decided to write the present book.

One of the aims of this book is to provide engineers and applied scientists with some selected results of functional equations which can be useful in applications. We are aware that this is not an easy task, and that any effort to bring together mathematicians and engineers, as experience shows, has many associated difficulties. We have, intentionally, omitted or simplified many proofs and details of theorems in order to make the text more readable to engineers. However, we wish to go even further, trying to offer the readers a different point of view and offer them a new way of thinking in mathematical modelling. Traditionally, engineers and scientists state practical problems in terms of derivatives or integrals, which lead to differential or integral equations, respectively. With this book we want to offer them the possibility of using functional equations too, as one more alternative, which is at least as powerful as either of the other two.

This book, which is based on lectures delivered by the authors at the University of Cantabria and in the book "Functional Equations in Science and Engineering", published by Marcel Dekker in 1992, focuses primarily upon applications and includes many examples of applications aiming to illustrate how functional equations are the ideal tool to design mathematical models. Thus, special attention is given to the analysis and discussion of the functional equations, in the light of their physical meaning, and to practical examples.

The book is organized in two parts. The first part is devoted to functional equations in general. Chapter 1 is an introduction to functional equations. In it, we use several simple problems to motivate functional equations. The beauty of functional equations becomes apparent when some formulas, such as the area of a rectangle or a trapezoid, or the interest formulas, arise as the only expressions that satisfy some natural conditions. Furthermore, we discover generalized formulas showing that the standard formulas are not sufficient to deal with all practical cases. In Chapter 2 an important effort has been made to identify a list of methods to solve functional equations, and give some illustrative examples to facilitate its understanding. We know of no other book giving this general

Preface xiii

methodology to solve functional equations. In Chapters 3 to 6 several functional equations in one or several functions in one or several variables are discussed, and several examples of applications are given. In Chapter 7 we discuss the problem of equivalence of functional, difference, and differential equations and use this equivalence to solve functional equations. The possibility of stating problems as functional equations, as an alternative to the usual statement of problems, based on differential or difference equations, is a new and powerful alternative that deserves special attention. To end this part, Chapter 8 deals with vector and matrix equations.

In the second part we apply functional equations to solve a wide range of practical problems. In Chapter 9 we introduce functional networks, a powerful generalization of neural networks. It is shown how every functional equation or system of functional equations leads to a functional network, and how it can be exploited to solve functional equations numerically. Functional networks have proven to be a powerful technique that allows simple and very efficient networks to be built. In Chapter 10 we deal with some applications to engineering, including the laws of Science, models for fatigue life, and beam equations. In Chapter 11 some applications to Geometry and to computer aided design are presented. Chapter 12 is devoted to applications in the Economic field: taxation functions, price indices, interest formulas, and many other material, including monopoly and duopoly models, are analyzed. Finally, in Chapter 13 some applications to Probability and Statistics are presented. In particular, several families of distributions are characterized.

We would like to thank A. Fernández-Canteli, J. Galambos, Barry C. Arnold, and J.M. Sarabia, with whom we have done joint work related to functional equations, for their invaluable stimulus and encouragement.

We also thank José Antonio Garrido and Iberdrola for partial support of this book.

Special recognition must be given to Janos Aczél. As mentioned before, his 1966 book drew the attention of the authors to the field of functional equations and made possible all their work in this interesting area of Mathematics. Professor Aczél has marked the path to follow for all those who love functional equations. We must also mention the remarkable book of Eichhorn (1978), where extremely interesting applications to Economics were presented.

Finally, we wish to mention the scientific community, mainly those included in the bibliography and those who were, surely but unintentionally, omitted. They, through their life's work, have made this book possible. To all of them, our most sincere thanks.

Enrique Castillo Andrés Iglesias Reyes Ruíz-Cobo

Santander, June 10, 2004.

Contents

	Pref	ace	хi	
Ι	Fu	nctional Equations	1	
1	Intr	oduction and motivation	3	
	1.1	Introduction	3	
	1.2	Some examples of functional equations	4	
	1.3	Basic concepts and definitions	9	
		Exercises	16	
2	Some methods for solving functional equations			
	2.1	Introduction	19	
	2.2	Replacement of variables by given values	20	
	2.3	Transforming one or several variables	22	
	2.4	Transforming one or several functions	23	
	2.5	Using a more general equation	24	
	2.6	Treating some variables as constants	25	
	2.7	Inductive methods	26	
	2.8	Iterative methods	27	
	2.9	Separation of variables	28	
	2.10	Reduction by means of analytical techniques	28	
		Mixed methods	29	
		Exercises	32	
3	Equ	ations for one function of one variable	35	
_	3.1	Introduction	35	
	3.2	Homogeneous functions	35	
	3.3	A general type of equation	38	
	3.4	Cauchy's equations	39	
	3.5	Jensen's equation	44	

viii Contents

	3.6	Generalizations of Cauchy's equations	45
	3.7	D'Alembert's functional equation	49
	3.8	Linear difference equations	49
		Exercises	54
4	Equ	nations with several functions in one variable	57
	4.1	Introduction	57
	4.2	Pexider's equations	58
	4.3	The sum of products equation	60
	4.4	Other generalizations	63
	2.2	Exercises	70
5	Ear	nation for one function of several variables	73
3	5.1	Introduction	73
	5.2	Generalized Cauchy and Jensen equations	73
	5.3	Other equations	79
			81
	5.4	Application to iterative methods	
	5.5	Some examples	83
		Exercises	89
6	-	nations with functions of several variables	91
	6.1	Introduction	91
	6.2	Generalized Pexider and Jensen equations	91
	6.3	Generalized Sincov equation	93
	6.4	A general equation	95
	6.5	The associativity equation	102
	6.6	The transitivity equation	105
	6.7	The bisymmetry equation	107
	6.8	The transformation equation	108
		Exercises	
7	Fun	actional equations and differential equations	11
	7.1	Introduction	111
	7.2	A motivating example	
	7.3	From functional to differential equations	
	7.4	From difference to differential equations	
	7.5	From differential to functional equations	
	7.6	From functional to difference equations	
	7.7	A new approach to physical and engineering problems	
	1.1	Exercises	
C	37		159
8		of and make of an arms	7 / Tarayana
	8.1	Introduction	
	8.2	Cauchy's equation	
	8.3	Pexider's equation	
	8.4	Sincov's equation and generalizations	162

Contents

		Exercises	165
II	$\mathbf{A}_{\mathbf{j}}$	pplications of Functional Equations	167
9	Func	Culonal I Culonas	169
	9.1	$Introduction \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	
	9.2	Motivating functional networks	
	9.3	Elements of a functional network \hdots	
	9.4	Differences between neural and functional networks	
	9.5	Working with functional networks $\ \ \ldots \ \ \ldots \ \ \ldots \ \ \ldots$	
	9.6	Model selection in functional networks	
	9.7	Some examples of the functional network methodology	182
	9.8	Some applications of functional networks	
		Exercises	228
10		olications to Science and Engineering	233
		$Introduction \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	
		A motivating example $\ \ldots \ \ldots \ \ldots \ \ldots \ \ldots \ \ldots$	
		Laws of science	
		A statistical model for lifetime analysis	
		Statistical models for fatigue life of longitudinal elements $\ \ \ldots \ \ \ldots$	
	10.6	Differential, functional and difference equations	
		Exercises	262
11		olications to Geometry and CAGD	265
		Introduction	
		Fundamental formula for polyhedra	
		Two interesting functions in computer graphics $\dots \dots \dots$	
		Geometric invariants given by functional equations	
		Using functional equations for CAGD	
	11.6	Application of functional networks to fitting surfaces	
		Exercises	317
12		plications to Economics	321
		Introduction	
		Price and quantity levels	
		Price indices	
		Interest rates	
		Demand function. Price and advertising policies	
		Duopoly Models	
	12.7	Taxation functions	
		Exercises	350

x Contents

13	App	lications to Probability and Statistics		351
	13.1	Introduction		351
	13.2	Bivariate distributions with normal conditionals		351
	13.3	Bivariate distributions with gamma conditionals	٠	356
	13.4	Other equations		359
	13.5	Linear regressions with conditionals in location-scale families .		361
	13.6	Estimation of a multinomial model		363
	13.7	Sum of a random number of discrete random variables		366
	13.8	Bayesian conjugate distributions		368
	13.9	Maximum stability		369
	13.10	DReproductivity		370
		Exercises		374

Part I Functional Equations