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Preface

Surfactant molecules can self-assemble in water, oil, oil-water, or solid-liquid
mixtures to give a large variety of colloidal structures. Structure—performance
relationships in surfactants are of great importance in nearly all fundamental
studies and practical applications of surfactants. To understand the properties
and performance of surfactants at various interfaces, such as air-liquid, lig-
uid-liquid, and solid-liquid, considerable theoretical and experimental work has
been carried out. Thirteen years ago, volume 253 in the American Chemical So-
ciety Symposium Series, Structure—Performance Relationships in Surfactants
(M. Rosen, ed.), was the first to discuss this topic. Now, greatly expanded in-
terest and additional important work in this field lead us to revisit this topic.
The volume has 13 chapters. R. Nagarajan deals with the thkories of micel-
lization of surfactants, surfactant—polymer mixtures, and surfaétant molecular
structure in Chapter 1. In Chapter 2, M. Aratono and N. lkeda outline the ad-
sorption characteristics of various surfactants at the air-liquid interface and dis-
cuss the relationship between surface properties and structures of surfactants.
M. Ueno and H. Asano focus on the mixed properties of bile salts and some
nonionic surfactants and give examples for applications of these systems in
Chapter 3. The molecular design and organized assemblies of biosurfactants are
discussed along with applications of multifunctional structure of biosurfactants
in Chapter 4 by Y. Ishigami. Chapter 5, by Y. Koide, deals with the physico-
chemical properties of ring structured surfactants including those of crown ether
type, polyamine type, cyclodextrin, and calix[n]arene. R. Zana discusses the
physicochemical properties of dimeric surfactants, such as micelle formation,
solubilization, micelle size and shape, rheology, and phase behavior in Chapter
6. In Chapter 7, by H. Hoffmann and W. Ulbricht, various types of viscoelas-
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tic surfactant systems are discussed and compared. Their rheological properties
are described, and some models are presented for the understanding of the dif-
ferent flow behaviors on the basis of the different microstructures. T. Kato pre-
sents the micelle structure of nonionic surfactants in dilute, semidilute, and
concentrated solutions and discusses the thermodynamic models for micellar
solutions and the phase transitions in liquid crystal phases in Chapter 8. In
Chapter 9, by H. Kunieda, A. C. John, R. Pons, and C. Solans, the high inter-
nal phase ratio emulsions are described, and the mechanism of formation, rhe-
ology, phase behavior, stability, and structure of these systems are discussed.

In Chapter 10, L. K. Koopal outlines the modeling of micellization and that
of adsorption and discusses the self-consistent field (SCF) lattice model devel-
oped for the association and adsorption of surfactants. Chapter 11, by K. Esumi,
focuses on the dispersion of particles by surfactants as well as the properties of
surfactant adsorbed layers. In Chapter 12, H. Otsuka and K. Esumi deal with the
interaction between polymers and surfactants on solid particles in aqueous solu-
tion. The conformation of polymers adsorbed from particles is also discussed by
electron ‘spin resonance (ESR) measurements. K. Kon-No reviews the states of
water droplets in various reversed micelles, synthesis methods, and factors af-
fecting the size and shape of various particles in Chapter 13.

We would like to thank Dr. Martin J. Schick for his advice and help. We
would also like to thank the authors who participated in this effort.

We are indebted to Joseph Stubenrauch and Anita Lekhwani of Marcel
Dekker, Inc., for their assistance in preparing this volume.

Kunio Esumi
Minoru Ueno
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. INTRODUCTION

The widespread applications of surfactants originate from the intrinsic duality
in their molecular characteristics—namely, they are composed of a polar head
group that likes water and a nonpolar tail group that dislikes water. Numerous
variations are possible in the types of the head groups and tail groups of surfact-
ants. For example, the head group can be anionic, cationic, zwitterionic, or non-
ionic. It can be small and compact in size, or a polymeric chain. The tail group
can be a hydrocarbon, a fluorocarbon, or a siloxane. It can contain straight
chains, branched or ring structures, multiple chains, and so forth. The tail group
can also be polymeric in character. Further, surfactant molecules with two head
groups (bola surfactants) are also available. This variety in the molecular struc-
ture of surfactants allows for extensive variation in their solution and interfacial
properties. One would naturally like to discover the link between the molecular
structure of the surfactant and its physicochemical action so that surfactants can
be synthesized or selected specifically for a given practical application.

Pioneering contributions to our understanding of the general principles of
surfactant self-assembly in solutions have come from the work of Tanford
| 1-3]. Shinoda [4]. and Mukerjee [5-9]. Utilizing their results, we have focused
our efforts in the last 20 years on developing quantitative molecular thermody-
namic models to predict the aggregation behavior of surfactants in solutions
starting from the surfactant molecular structure and the solution conditions. In
our approach, the physicochemical factors controlling self-assembly are first
identified by examining all the changes experienced by a singly dispersed sur-
factant molecule when it becomes part of an aggregate [10-13]. Relatively sim-
ple, explicit equations are then formulated to calculate the contribution to the
free energy of aggregation associated with each of these factors. Since the
chemical structure of the surfactant and the solution conditions are sufficient for
estimating the molecular constants appearing in these equations, the free energy
expressions can be used to make a priori predictions.

In this chapter, we describe in detail our quantitative approach to predicting
the micellization properties of surfactants from their molecular structures. First,
we summarize the geometrical relations for various shapes of aggregates in-
cluding spherical. globular, and rodlike micelles and spherical bilayer vesicles,
and we present the general thermodynamic equations that govern the aggrega-
tion properties of surfactants in solutions. We then provide explicit equations to
calculate the free energy of formation of different types of aggregates, suggest
how the molecular constants appearing in these equations can be estimated, and
describe the computational approach suitable for making predictive calcula-
tions. Finally, we demonstrate the predictive power of the molecular theory de-
veloped in our studies via illustrative calculations performed on a number of
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surfactant molecules having a variety of head and tail groups, numerous binary
mixtures of surfactants, and surfactants in the presence of nonionic polymers.

IIl. MICELLIZATION OF SURFACTANTS

A. Geometrical Properties of Aggregates

1. Packing Constraint

The hydrophobic domain of a surfactant aggregate contains the surfactant tails.
If the density in this domain is equal to that in similar hydrocarbon liquids, the
surfactant tails must entirely fill the space in this domain. This implies that, ir-
respective of the shape of the aggregate, no point within the aggregate can be
farther than the distance € from the aggregate-water interface, where € is the
extended length of the surfactant tail. Therefore, at least one dimension of the
surfactant aggregate should be smaller than or at most equal to 2€; [1-3,14].
The volume of the hydrophobic domain is determined from the number of sur-
factant molecules g in the aggregate and the volume vg of the surfactant tail.

2. Aggregate Shapes

Figure 1 illustrates the shapes of surfactant aggregates formed in dilute solu-
tions. The small micelles are spherical in shape. When large rodlike micelles
form, they are visualized as having a cylindrical middle portion and parts of
spheres as endcaps. The cylindrical middle and the spherical endcaps are al-
lowed to have different diameters. When surfactants cannot pack into spheres
(this happens for aggregation numbers for which a spherical aggregate will have
a radius larger than €;), and if at the same time the rodlike micelles are not yet
favored by equilibrium considerations, then small nonspherical globular aggre-
gates form. Israelachvili et al. [15] have suggested globular shapes generated
via ellipses of revolution for the aggregates in the sphere-to-rod transition
region, after examining the local molecular packing requirements for various
nonspherical shapes. The average surface area per surfactant molecule of the
ellipses of revolution suggested by Israelachvili et al. [15] is practically the
same as that of prolate ellipsoids, for aggregation numbers up to three times
larger than that of the largest spherical micelles. Therefore, the average
geometrical properties of globular aggregates in the sphere-to-rod transition re-
gion can be computed as for prolate ellipsoids. Some surfactants pack into a
spherical bilayer structure, called a vesicle, that encloses an aqueous cavity. In
the outer and the inner layers of the vesicle, the surface area (in contact with
water) per surfactant molecule and the number of surfactant molecules need
not be equal to one another, and the thicknesses of the two layers can also be
different.
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(d)

FIG. 1 Schematic representation of surfactant aggregates in dilute aqueous solutions.
The structures formed include spherical micelles (a), globular micelles (b), spherocylin-
drical micelles (c), and spherical bilayer vesicles (d).

3. Geometrical Relations for Aggregates

For aggregates ofl various shapes containing g surfactant molecules, the volume
of the hydrophobic domain of the aggregate, V,, the surface area of contact be-
tween the aggregate and water, A,, and the surface area at a distance & from the
aggregate—water interface, A, are listed in Table 1. Also given in the table is
a packing parameter P. defined in terms of the geometrical variables character-
izing the aggregate. The area A5 is employed in the computation of the free
energy of electrostatic interactions between surfactant head groups, whereas the
packing parameter P is used in the computation of the free energy of tail de-
formation; both are discussed in Sec. ILD. From the geometrical relations pro-



