i
‘ Algebra, Logic and Applications Series Volume 11

‘Models for
Concurrency

~ Uri Abraham

4

Gordon and Breach Science Publishers

MODELS FOR CONCURRENCY

Uri Abraham
Department of Mathematics and Computer Science
Ben Gurion University, Be’er Sheva, Israel

GORDON AND BREACH SCIENCE PUBLISHERS

Australia ® Canada ¢ China ¢ France ® Germany ¢ India
Japan ¢ Luxembourg ¢ Malaysia ® The Netherlands e Russia
Singapore ® Switzerland

Copyright © 1999 OPA (Overseas Publishers Association) N.V. Published by
license under the Gordon and Breach Science Publishers imprint.

All rights reserved

No part of this book may be reproduced or utilized in any form or by any means,
electronic or mechanical, including photocopying and recording, or by any
information storage or retrieval system, without permission in writing from the
publisher. Printed in Malaysia.

Amsteldijk 166

1st Floor

1079 LH Amsterdam
The Netherlands

British Library Cataloguing in Publication Data
A catalogue record for this book is: available

from the British Library.

ISBN 90-5699-199-X

MODELS FOR CONCURRENCY

ALGEBRA, LOGIC AND APPLICATIONS
A series edited by

R. Gobel

Universitat Gesamthochschule, Essen, Germany

A Macintyre

The Mathematical Institute, University of Oxford, UK

Volume 1
Linear Algebra and Geometry
A. I. Kostrikin and YU. I. Manin

Volume 2
Model Theoretic Algebra: With Particular Emphasis on Fields, Rings, Modules
Christian U. Jensen and Helmut Lenzing

Volume 3
Foundations of Module and Ring Theory: A Handbook for Study and Research
Robert Wisbauer

Volume 4
Linear Representations of Partially Ordered Sets and Vector Space Categories
Daniel Simson

Volume 5
Semantics of Programming Languages and Model Theory
Manfred Droste and Yuri Gurevich

Volume 6

Exercises in Algebra: A Collection of Exercises in Algebra, Linear Algebra
and Geometry

Edited by A. I. Kostrikin

Volume 7
Bilinear Algebra: An Introduction to the Algebraic Theory of Quadratic Forms
Kazimierz Szymiczek

Volume 8
Multilinear Algebra
Russell Merris

Volume 9
Advances in Algebra and Model Theory
Edited by Manfred Droste and Rudiger Gobel

Volume 10
Classifications of Abelian Groups and Pontrjagin Duality
Peter Loth

Volume 11

Models for Concurrency

Uri Abraham

This book is part of a series. The publisher will accept continuation orders which may be cancelled

at any time and which provide for automatic billing and shipping of each title in the series upon
publication. Please write for details.

Preface

The title ‘Models for Concurrency’ indicates that models (in the sense of model
theory) are applied here to the analysis of concurrent protocols, and not that the
diverse paradigms for modeling concurrency are explained.

The dominating tenet in concurrency research today takes the notion of a state
as the basic unit, and uses it to describe systems and processes’ behavior. A state
is an assignment of values to a set of variables, and analysis of a system involves
defining this set of variables and determining the rules-of-change that relate states
to their successors. A ‘history’ is a sequence of states, possibly infinite, governed
by these rules. Correctness proofs are essentially proofs ‘by induction’, whereby
an assertion is proved to hold in each state in a history if it holds in the initial state
and then the rules of change will not falsify it. I find that decomposing reality as a
sequence of states is often inadequate and unnatural because we usually think of
events — not of states — in forming our view of reality. These events overlap in
time in such a complex manner that the state rendering of reality often becomes
artificial.

When thinking and arguing informally about concurrent systems, computer
scientists often use what has been called behavioral reasoning (*‘before sending
the message, process P read register R and realized that ...”"). This type of reasoning
was found by many to be unreliable, and formal methods were suggested for
proving protocols’ correctness. For example, L. Lamport and F. B. Schneider
wrote ([21] page 203):

Most computer scientists find it natural to reason about a concurrent program in
terms of its behavior — the sequence of events generated by its execution.
Experience has taught us that such reasoning is not reliable; we have seen too
many convincing proofs of incorrect algorithms. This has led to assertional proof
methods, in which one reasons about the program’s state instead of its behavior.
Unlike behavioral reasoning, assertional proofs can be formalized — i.e., reduced
to a series of precise steps that can, in principle, be machine-verified.

I agree that it is natural to reason about a concurrent program in terms of its
behavior, but I believe that behavioral reasoning can be formalized too. Using
first-order sentences and models that describe events and their attributes, one can
transform behavioral reasoning into a formal mathematical proof and still keep the
main features of the informal argument. The purpose of the book is to describe
this approach and its background with many examples.

X PREFACE

The basic mathematical notion used here is that of a model for a first-order
theory. The first chapter introduces the required concepts from model theory (only
the very elementary concepts are needed). The second chapter concentrates on
system executions: the structures employed here to model concurrency. The third
chapter, the heart of the book, describes the semantics of a simple language that
allows concurrent executions of sequential programs. Chapter 4 explains how this
semantics can be used to prove the correctness of protocols, and Chapter 5 deals
with the question of resolving executions into higher-level and lower-level
granularities.

The second part of the book explains the producer/consumer problem and
describes two (known) solutions. The first, in Chapter 6, uses semaphores, and the
second, in Chapter 7, uses a circular buffer.

The third part of the book deals with message passing rather than shared
memory. The first chapter there specifies some notions connected with channels
(such as non-lossy channels) which are used in the following chapters, and
introduces an axiomatic treatment of sliding window protocols. Chapter 9 picks up
the producer/consumer problem again, but now with messages through a channel.
The purpose of this chapter is to prove the correctness of the Sliding Window
Protocol. Chapter 10 discusses basic concepts (such as causality) in networks.
Chapter 11 is about uniform deliveries; it is centered around a very interesting
protocol: the Early Delivery Protocol of Dolev, Kramer, and Malki [14].

Not everybody is interested in completely formal correctness proofs that are
written out according to strict first-order rules. The designers of a system or the
programmer seeking to improve her algorithm mostly want to be convinced that
the protocol is correct and to find precise descriptions of its behavior. The second
and third parts of the book are written in everyday mathematical parlance that can
‘in principle’ be fully formalized. This approach can be valuable to those who
wish to express concurrency arguments in a rigorous language (that of model
theory) but do not desire to transform them into a fully formal first-order proof. (It
will take more work to provide tools that help to make such transformations — an
important issue though beyond the scope of this book and its methods.)

These notes originated with a course given in the summer of 1995 at Ben-
Gurion University to a group of students from the industry, whose definite
expectations and interests largely determined the form and content of my lectures.
More practical examples were required to keep the students’ interest, and no
obvious background could be assumed. I am grateful to all of them. including the
one who kept asking why so much effort is invested in proving obvious facts.

The book was typeset with the AMS LATEX program. I wish to express my
admiration to the generosity of those who developed such programs and made
them available to all. I was lucky to have two experts among my friends, James
Cummings and Martin Goldstern, who knew how to adapt the program to my
needs. I am also grateful to the staff of Gordon and Breach for editorial help and
cooperation. Additional thanks go to Bob Constable who has made valuable
suggestions concerning Chapter 2.

Preface

Contents

PART 1
Semantics of distributed protocols

1. Elements of model theory

1.

Structures
1.1. Examples of multi-sorted structures

First-order languages and satisfaction
2.1. Satisfaction

2.2. Logical implication’,

2.3. Substructures and reducts

2.4. Composite structures

An example: a mutual exclusion protocol
3.1. Proof of the Mutual Exclusion property

2. System executions

1.

Time and interval orderings
1.1. Finiteness conditions

Definition of system executions
2.1. Global time
2.2. Parallel composition of systems

Higher and lower-level events
3.1. Beginning of events

Specification of registers and communication devices
4.1. Specifying communication devices

Achilles and the Tortoise
5.1 Concurrency
5.2. Zeno’s paradox

3. Semantics of concurrent protocols

1.

A protocol language and its flowcharts
1.1. Serial and concurrent procedures

v

X

W W W

12
12
13

15
21
24

24
27

30
30
31

32
34

34
37

41
44
46

48

49
50

vi

CONTENTS
1.2. Flowcharts of protocols
1.3. States and transitions

Semantics of flowcharts
2.1 Histories and executions of flowcharts
2.2. External semantics

Histories as structures

The Pitcher/Catcher example

Correctness of protocols

1.

Mutual exclusion revisited

Higher-level events

1.
2.
3.

On the Producer/Consumer problem: buffers and semaphores

Pitcher/Catcher revisited
Procedure calls

KanGaroo and LoGaroo
3.1. Formalizing the proof

The Aimless Protocols
4.1. Higher-level relations

Local registers

PART 2
Shared-variable communication

The Producer/Consumer problem
Buffer cells

Semaphores
3.1. The textbook specification
3.2. Abstract specification of semaphores

Load/unload with semaphores

A Multiple Process Mutual Exclusion Protocol

Circular buffers

1.

2:

Unbounded sequence numbers
1.1. The function activate

1.2. Safety

1.3. Liveness

Bounded sequence numbers

52
55

57
57
59

59
61

69
69

78
79
90

91
95

99
101

106

111
111
114

115
117
122

126
129

132

132
136
140
141

142

CONTENTS

PART 3
Message communication

8. Specification of channels

10.

11.

1.

Channels
1.1. Capacity of a channel

A redressing protocol
Sliding Window Axioms
A Multiple Producer Protocol

A sliding window protocol

Protocol analysis and definition and higher-level events
1.1. Higher-level functions

The Sliding Window Axioms hold
2.1. Complete SEND/RECEIVE/ACK events

Correctness of the protocol

Broadcasting and causal ordering

1.

W N

gl

Send/Receive Network Signature
Message Domain *
Causality

Causality preservation and deliveries
4.1. Uniform deliveries

Time-stamp vectors

Uniform delivery in group communication

1.

A generic Uniform Delivery Protocol

1.1. The Time-Stamp Vector Axioms are satisfied
1.2. Data Buffers

1.3. The All-Ack Protocol

Correctness of the generic protocol
The Early Delivery Protocol

A worked-out example

vii

147

148
151

152
154
158

164

170
177

184
184

187

189
190
191
193

196
198

199

203

203
207
209
212

213
215
221

viii CONTENTS

Epilogue: Formal and informal correctness proofs 232
References 234

Index 236

PART 1

Semantics of distributed protocols

The first part introduces some elementary notions of model
theory and uses them to explain the semantics of concur-
rently communicating processes. We formally define what
an execution of a protocol is and what it means to prove
that a protocol satisfies some correctness statements.

1
Elements of model theory

First-order languages and their interpretations (models) are used in
this book to specify systems and describe the behavior of programs.
This chapter introduces some of the elementary notions from model
theory that are needed, such as structure, first-order language, and
the satisfaction relation. We study these notions informally and
only to such a degree as required to read the book.

1. Structures

In this chapter we shall be concerned with language and models (structures)—
two interrelated concepts that play a central role in logic and in this book. To
define a language its signature is needed first.

DEFINITION 1.1 (SIGNATURE). We say that L is a signature if L is a four-
tuple (P, F,¢, arity) where:
(1) P is a finite sequence (Py,... ,Px) of symbols called predicates. For each
predicate P; in the sequence, arity(P;) is a non-zero natural number called
“the arity of P;”.

(2) F = (F,...,F,) is a finite sequence of “function symbols”, and, again, a
non-zero natural number arity(F;) is associated with each function sym-
bol.

(3) €= {c1,...) is (a possibly infinite) sequence of “constants”.

For example, to describe the natural numbers, a signature L may be formed
by taking a single predicate <* with arity 2, two function symbols, +* and x*,
with arity 2, and a single constant, the symbol 0* (it would also be natural to
add all constants n* to represent the natural numbers n € N). L is thus just a set
of symbols with associated arities. The asterisk, for example +*, is to emphasize
that this is just a symbol rather than the familiar addition operation +. In later
chapters I will not be that careful and the reader will have to find the status
of the symbol from the context. The standard interpretation for this signature
is obtained by taking as the universe of discourse the set of natural numbers
N, the familiar ordering relation as an interpretation of <*, the addition and

3

4 1. ELEMENTS OF MODEL THEORY

multiplication operations as interpretations of +* and x*, and the number zero
to interpret 0*.

Another natural interpretation for L is obtained by taking the real numbers.
But arbitrary interpretations are also possible: Indeed any non-empty set with
a binary relation, two functions, and a constant can interpret L. Of course the
choice of a symbol may indicate the intentions of the users, but these intentions
cannot replace a definition.

We are now going to define interpretations in general.

DEFINITION 1.2 (INTERPRETATION). Let L = (P, F,G,arity) be a signature.

M is called an interpretation (or a structure) for L if M = (A,FM,FM,EM)
consists of the following.

(1) A is a non-empty set denoted | M| and called the universe of M. Members
of A are called “individuals” of M.

(2) Y = (PM,...,PM) associates with each predicate P; in L of arity
m = arity(P;) an m-ary relation P on |M|. That is PM C A™.
(For any set A, A™ denotes the collection of all m-tuples from A.) In
particular, every unary predicate symbol is associated with a subset of the
universe.

(3) F = (FM,...,FM) is an interpretation of all function symbols. For each
function symbol F}, of arity m, FjM is an m-place function

FJ-M: IM|™ = |M].

(The notation f : X — Y means that f is a function from X to Y. Thus
FjM is defined on |M|™, the set of m-tuples of individuals, and takes
values in |[M|.)

(4) Finally, ™' = (c™ | ¢ a constant) interprets the constants of L: For
every constant ¢ in L, c™ is an individual of M. That is, ™M € |M]|.

Reality often forces us to consider objects of different natures. There are two
possible ways to model two (or more) sorts of individuals in a structure. The first
is to assume that there is a single universe containing a mixture of individuals
of all sorts, and to distinguish them by different predicates. The second is the
way adopted here: to assume not just a single universe of discourse, but several
domains, called sorts, in a single structure. Such structures are said to be multi-
sorted. I give an example for this in the following subsection, but multi-sorted
signatures are defined first.

DEFINITION 1.3 (MULTI-SORTED SIGNATURE). A multi-sorted signature is a
sequence of the form

L =(Si,...,Sn; P,F,¢ arity, sort)

where (P, F,¢,arity(is a signature, Sy, ..., S, is a list of symbols called sorts,
and sort is a function that associate with each predicate, function, or constant
its sort as follows.

If P is a predicate of arity k, then sort(P) is a k-tuple of sorts. That is
sort(P) = (Xi,...,Xk) where each X; is some S; (repetitions are allowed).

1. STRUCTURES 5

The intention is that the question of whether P(z1,... ,xy) holds or not can be
asked only if each z; is of sort X;. Similarly, with each k-ary function symbol F',
sort(F) is a k+1 tuple of sorts defining the sorts both of the domain and the range
of F. Finally sort(c) for a constant ¢ gives the sort of c. We often introduce
a semicolon (;) after the list of sorts to separate them from the predicates and
functions.

DEFINITION 1.4 (MULTI-SORTED INTERPRETATION). An interpretation M for
a multi-sorted signature L consists of

(1) a universe |M| = SMUSM ... USM, which is now a union of the sorts
(not necessarily a disjoint union), and

(2) the predicates, function symbols and constants, which are interpreted in
accordance with their sorts.

This means, for example, that if F' is a two-place relation symbol and sort(F') =
(S1,82), then FM C SM x SM. Similarly, if g is a unary function with
sort(g) = (Si, Sa2), then gM : SM — SM.

DEFINITION 1.5 (ISOMORPHISM). Let L be a signature with sorts Sy, ..., Sy,
and let My, My be two interpretations of L. We say that f : |M1| = |[My] is
an isomorphism of My and My if f is one-to-one from the universe of M,y and
onto the universe of Ms such that:

(1) For every sort S;, m € SiM1 iff f(m) € S;Mz. (iff stands for “if and only
if 7.)
(2) For every n-ary predicate symbol P and n-tuple my,... ,m, € (M|,
(m1,...,mp) € PM1aff (f(my),..., f(mn)) € PM,
(3) For every n-place function symbol F,

FEM (my,. . my)) = FM2{(f(ma), ... f(ma).
Similarly, if c is any constant then f(cMt) = cM2.

Since we shall identify two isomorphic structures, this concept reflects our
understanding that the inner composition of the elements of the universe of a
structure is not relevant. These elements are just abstract “points” devoid of
any inherent meanings, were it not for the functions and predicates defined on
them.

1.1. Examples of multi-sorted structures. In the first example we model
the situation in which several measurements of light intensity are made by some
light-meter. A measurement evaluates the average intensity of light during the
opening of the meter, which is by definition the integral of the intensity over the
aperture interval divided by its length. We want to be able to express in our lan-
guage the fact that distinct measurements may be made over different exposure
intervals and may show different values. For this, every structure contains a set
of “events” that represent measurements, and a value is assigned to each event
to represent the result of the measurement. Hence two sorts of individuals are
needed: measurement events and real numbers (if we want the results to be real
numbers). Moreover, to evaluate the measurement error, we would like to have

6 1. ELEMENTS OF MODEL THEORY

the “true” light intensity function in the structure, that is the function that gives
the real intensity at each instant. We shall denote this function by I and let I(¢)
denotes the light intensity at moment t. We also want the integral function of
I. This integral function will allow us to express the average intensity.

In our example the measurement events are one sort and the real numbers
are another. An advantage of this two-sorted approach is that functions and
relations may be specific to certain sorts. The addition operation, for example,
is defined on the real numbers, and it is meaningless to ask for the addition of
events.

So we define first a signature K that contains two sorts: E and R (the elements
of E are called events and those of R numbers). In addition, K contains the
following.

(1) A binary predicate < and binary function symbols +, —, X, / over sort
R. (For typographical clarity, we no longer use the asterisks.) When we
say that +, for example, is over R we mean that sort(+) = (R, R, R); that
is to say that + is interpreted as a function taking pairs of individuals of
sort R into individuals of sort R.

(2) For each rational number ¢, a constant gq.

(3) Two function symbols, Left_End and Right_End, are defined on E and
give values in R. (The intention is to use them to give for every event e
its temporal interval (Left_End(e), Right_End(e))).

(4) A unary function Value defined on E and giving values in R. (The
intention is to use it for the values of the measurement events.)

(5) Two unary function symbols I and A. I(t) gives the true light intensity
at time ¢, and A(t) is the integral of I from some start-up time ¢y to ¢
(so to is a constant in this signature). A more familiar notation for A(t)
would be f:u I(z)dz, but of course it is too far from our syntax.

A standard real number interpretation M of K is a structure containing
the real numbers ® (interpreting the sort R) and a set EM of “events”. The
interpretation of the arithmetical operations is the standard interpretation on
R (for example, <™ is the natural ordering on R). For each individual e
in EM, Left_End™(e), Right_End™(e), Value™(e) are real numbers with
Left_End™(e) <™ Right_End™(e). The interpretation of I is an arbitrary
(integrable) real-valued function I, and AM is its integral (from time tj* € R).

Of course there is nothing in the symbols to force this particular interpreta-
tion, and many others are possible. This example is brought here just to give
some idea of the diversity of situations where multi-sorted structures can be
used, and though it is used again in the next section it will not be used later on.

Two-sorted structures are useful to handle pairs and finite sequences, as the
second example shows. This will be significant for later development in the book.
Usually we write pairs with angled brackets (a, b), but for simplicity of expression
we often use round brackets (a, b).

In set theory one learns how to form pairs as sets. A pair (a, b) can be defined
as a set {{a},{a,b}}. We do not use this (or any other) particular representation
here as only the abstract properties of pairs and finite sequences are needed. We
shall define now the language in which these abstract properties are expressed.

