SECONRD EDITEQON

tesley anne robertsaon

SECOND EDITION

Simple Program Design

Lesley Anne Robertson

A

—=~=— Course Technology, Inc. One Main Street, Cambridge, MA 02142
Course

TECHNOLOGY

Nelson I®P®
102 Dodds Street
South Melbourne 3205

Email nelsonitp@nelson.com.au
Website http://www.nelsonitp.com

Simultaneously published by Course Technology, Inc
One Main Street
Cambridge, MA 02142

Nelson I®P® an International Thomson Publishing company

First published in 1993

109

05 04 03 02 01 00 99 98

Copyright © Lesley Anne Robertson

COPYRIGHT

Apart from fair dealing for the purposes of study, research, criticism or
review, or as permitted under Part VB of the Copyright Act, no part of
this book may be reproduced by any process without permission.
Copyright owners may take legal action against a person who infringes
on their copyright through unauthorised copying. Enquiries should be
directed to the publisher.

Course Technology and the open book logo are registered trademarks of
Course Technology, Inc.

Nelson I(TP® edition ISBN 0 17 008822 7

National Library of Australia
Cataloguing-in-Publication data

Robertson, Lesley Anne.
ISBN 0 17 008822 7.
Simple program design.
2nd ed.
1. Programming (Electronic computers). 2. Structured programming.
3. Pseudocode (Computer program language). I. Title.
005.12

Boyd & Fraser edition ISBN 0-87709-283-4
Cover designed by David Albon

Text designed by Christina Neri
Printed in China by L. Rex Printing Co. Ltd.

Nelson Australia Pty Limited ACN 058 280 149 (incorporated in
Victoria) trading as Nelson ITP.

SECOND EDITION

Simple Program Design |

reface

With the increased popularity of programming courses in our universities,
colleges and technical institutions, there is a need for an easy-to-read
textbook on computer program design. There are already dozens of
introductory programming texts using specific languages such as PASCAL,
BASIC, COBOL or C, but they usually gloss over the important step of
designing a solution to a given programming problem.

This textbook tackles the subject of program design by using structured
programming techniques and pseudocode to develop a solution algorithm.
The recommended pseudocode has been chosen because of its closeness to
written English, its versatility and ease of manipulation, and its similarity
to the syntax of most structured programming languages.

Simple Program Design is designed for programmers who want to
develop good programming skills for solving common business problems. Too
often, programmers who are faced with a problem launch straight into the
code of their chosen programming language, instead of concentrating on the
actual problem at hand. They become bogged down with the syntax and
format of the language, and often spend many hours getting the program to
work. Using this textbook, the programmer will learn how to define the
problem, how to design a solution algorithm, and how to prove the
algorithm’s correctness, before coding a single statement from any
programming language. By using pseudocode and structured programming
techniques, the programmer can concentrate on developing a well-designed
and correct solution, and thus eliminate many frustrating hours at the
testing phase.

The book is divided into eleven chapters, beginning with a basic
explanation of structured programming techniques, top-down development
and modular design. Then, concept by concept, the student is introduced to
the syntax of pseudocode; methods of defining the problem; the application of
basic control structures in the development of the solution algorithm; desk

[x

[PREFACE

checking techniques; hierarchy charts; module design; parameter passing;
object-oriented design methodology; and many common algorithms.

Each chapter thoroughly covers the topic at hand, giving practical
examples relating to business applications, and a consistently structured
approach when representing algorithms and hierarchy charts.

This second edition of Simple Program Design contains material which
is an extension to that in the first edition. Nassi-Schneiderman (N-S)
diagrams have been removed from the body of the book and are introduced
and developed entirely in Appendix 1. Appendix 1 has been written for those
programmers who prefer a more diagrammatic approach to algorithm design
and solutions to all the pseudocode algorithms in Chapters 2, 3, 4 and 5 have
been presented again in this appendix using N-S diagrams.

This second edition also contains a number of early examples and
problems which do not involve file processing. Because the examples are
interactive, many of them can be coded directly into a programming
language, and executed, before the topic of file processing has been covered.

The concepts of arrays and parameter passing are introduced early in
the book, with many examples provided. Object-oriented design methodology
and information hiding are introduced in Chapter 8, and dynamic data
structures such as queues, stacks and linked lists are introduced in
Appendix 2.

I would like to thank Dr Malcolm Cook at the University of Western
Sydney for his suggestions and assistance with this second edition; my
husband, David, for editing the manuscript; and my brother, Rick Noble, for
his amusing cartoons.

Lesley Anne Robertson

ontents

Preface ix

1 Program design

Describes the steps in the program development process, explains structured
programming, and introduces algorithms and pseudocode.

1.1 Steps in program development

1.2 Structured programming

1.3 An introduction to algorithms and pseudocode
1.4 Chapter summary

S Ot s N

2 Pseudocode

Introduces common words and keywords used when writing pseudocode. The
Structure Theorem is introduced, and the three basic control structures are
established. Pseudocode is used to represent each control structure.

2.1 How to write pseudocode 10
2.2 The Structure Theorem 13
2.3 Chapter summary 16

3 Developing an algorithm

Introduces methods of analysing a problem and developing a solution.
Simple algorithms which use the sequence control structure are developed,
and methods of manually checking the algorithm are determined.

3.1 Defining the problem 18
3.2 Designing a solution algorithm 22
3.3 Checking the solution algorithm 25
3.4 Chapter summary 30

3.5 Programming problems 31

vi I CONTENTS]

4 Selection control structures

Expands the selection control structure by introducing multiple selection,
nested selection, and the case construct in pseudocode. Several algorithms,
using variations of the selection control structure, are developed.

4.1 The selection control structure 34
4.2 Algorithms using selection 37
4.3 The case structure 44
4.4 Chapter summary 47
4.5 Programming problems 48

5 Repetition control structures

Develops algorithms which use the repetition control structure in the form of
DOWHILE, REPEAT...UNTIL, and counted repetition loops.

5.1 Repetition using the DOWHILE structure 52
5.2 Repetition using the REPEAT...UNTIL structure 61
5.3 Counted repetition constructs 66
5.4 Chapter summary 70
5.5 Programming problems 70

6 Pseudocode algorithms using sequence, selection and repetition

Develops algorithms to eight simple programming problems using
combinations of sequence, selection and repetition constructs. Each problem
is properly defined; the control structures required are established; a
pseudocode algorithm is developed; and the solution is manually checked for

logic errors.

6.1 Eight solution algorithms 74
6.2 Chapter summary 85
6.3 Programming problems 85

7 Modularisation

Introduces modularisation as a means of dividing a problem into subtasks.
Hierarchy charts are introduced as a pictorial representation of program
module structure. Several algorithms which use a modular structure are

developed.

7.1 Modularisation 88
7.2 Hierarchy charts or structure charts 91
7.3 Steps in modularisation 97
7.4 Programming examples using modules 97
7.5 Chapter summary 108

7.6 Programming problems 109

| CONTENTS J vii

8 Communication between modules

Defines elementary data items and data structures and introduces the
concepts of inter-module communication, local and global data, and the
passing of parameters between modules. Algorithms which pass parameters
are developed. The concept of object-oriented design is introduced, and the
terms associated with it are defined.

8.1 Program data 114
8.2 Communication between modules 115
8.3 Using parameters in program design 117
8.4 Object-oriented design 121
8.5 Chapter summary 123
8.6 Programming problems 123

9 Cohesion and coupling

Introduces the concepts of module cohesion and coupling. Several levels of
cohesion and coupling are described, and pseudocode examples of each level
are provided.

9.1 Module cohesion 126
9.2 Module coupling 132
9.3 Chapter summary 137
9.4 Programming problems 137

10 General pseudocode algorithms for common business problems

Develops a general pseudocode algorithm for five common business
applications. All problems are defined; a hierarchy chart is established; and
a pseudocode algorithm is developed, using a mainline and several
subordinate modules. The topics covered include report generation with page
break, a single-level control break, a multiple-level control break, a
sequential file update program, and array processing.

10.1 Program structure 140
10.2 Report generation with page break 141
10.3 Single-level control break 143
10.4 Multiple-level control break 146
10.5 Sequential file update 151
10.6 Array processing 158
10.7 Chapter summary 161

10.8 Programming problems 161

Riii ‘ CONTENTS

11 Conclusion
A revision of the steps involved in good program design.

11.1 Simple program design 166
11.2 Chapter summary 168

Appendix 1 Nassi-Schneiderman diagrams

Covers Nassi-Schneiderman diagrams for those students who prefer a more
diagrammatic approach to program design. Algorithms which use a
combination of sequence, selection and repetition constructs are developed in
some detail.

The three basic control structures 170
Simple algorithms which use the sequence control structure 172
N-S diagrams and the selection control structure 174
Simple algorithms which use the selection control structure 176
The case structure, expressed as an N-S diagram 180
N-S diagrams and the repetition control structure 181
Simple algorithms which use the repetition control structure 182

Appendix 2 Special algorithms

Contains a number of algorithms which are not included in the body of the
book but may be required at some time in a programmer’s career.

Sorting algorithms 188
Algorithms which manipulate arrays 190
Dynamic data structures 192
Glossary 197

Index 201

rogram design

OBJECTIVES

&

To describe the steps in the program development process
To explain structured programming
To introduce algorithms and pseudocode

B 8

OUTLINE

1.1 Steps in program development

1.2 Structured programming

1.3 An introduction to algorithms and pseudocode
1.4 Chapter summary

[z
[14]

ISIMPLE PROGRAM DESIGNI

STEPS IN PROGRAM DEVELOPMENT

Computer programming is an art. Many people believe that a programmer
must be good at mathematics, have a memory for figures and technical
information, and be prepared to spend many hours sitting at a terminal,
typing programs. However, given the right tools, and steps to follow, anyone
can write well-designed programs. It is a task worth doing, as it is both
stimulating and fulfilling.

Programming can be defined as the development of a solution to an
identified problem, and the setting up of a related series of instructions
which, when directed through computer hardware, will produce the desired
results. It is the first part of this definition which satisfies the programmer’s
creative needs: that is, to design a solution to an identified problem. Yet this
step is so often overlooked. Leaping straight into the coding phase without
first designing a proper solution usually results in programs that contain a
lot of errors. Often the programmer needs to spend a significant amount of
time finding these errors and correcting them. A more experienced
programmer will design a solution to the program first, desk check this
solution, and then code the program in a chosen programming language.

There are seven basic steps in the development of a program. An outline
of these seven steps follows.

1 Define the problem

This step involves carefully reading and rereading the problem until you
understand completely what is required. To help with this initial analysis,
the problem should be divided into three separate components:

e the inputs,
e the outputs, and
o the processing steps to produce the required outputs.

A defining diagram as described in Chapter 3 is recommended in this
analysis phase, as it helps to separate and define the three components.

2 Outline the solution

Once the problem has been defined, you may decide to break the problem up
into smaller tasks or steps, and establish an outline solution. This initial
outline is usually a rough draft of the solution which may include:

o the major processing steps involved,

o the major subtasks (if any),

e the major control structures (e.g. repetition loops),
e the major variables and record structures, and

e the mainline logic.

PROGRAM DESIGNJ 3

The solution outline may also include a hierarchy or structure chart.
The steps involved in creating this outline solution are detailed in Chapters
2 to 6.

3 Develop the outline into an algorithm

The solution outline developed in Step 2 is then expanded into an algorithm:
a set of precise steps which describe exactly the tasks to be performed and
the order in which they are to be carried out. This book uses pseudocode (a
form of structured English) to represent the solution algorithm, as well as
structured programming techniques. Nassi-Schneiderman diagrams are also
provided in Appendix 1 for those who prefer a more pictorial method of
algorithm representation. Algorithms using pseudocode and the Structure
Theorem are developed thoroughly in Chapters 2 to 6.

4 Test the algorithm for correctness

This step is one of the most important in the development of a program, and
yet it is the step most often forgotten. The main purpose of desk checking the
algorithm is to identify major logic errors early, so that they may be easily
corrected. Test data needs to be walked through each step in the algorithm
to check that the instructions described in the algorithm will actually do
what they are supposed to. The programmer walks through the logic of the
algorithm, exactly as a computer would, keeping track of all major variables
on a sheet of paper. Chapter 3 recommends the use of a desk check table to
desk check the algorithm, and many examples of its use are provided.

5 Code the algorithm into a specific programming language

Only after all design considerations have been met in the previous four steps
should you actually start to code the program into your chosen programming
language.

6 Run the program on the computer

This step uses a program compiler and programmer-designed test data to
machine-test the code for both syntax and logic errors. This is usually the
most rewarding step in the program development process. If the program
has been well designed then the usual time-wasting frustration and despair
often associated with program testing are reduced to a minimum. This step
may need to be performed several times until you are satisfied that the
program is running as required.

|SIMPLE PROGRAM DESIGN]

7 Document and maintain the program

Program documentation should not be listed as the last step in the program
development process, as it is really an ongoing task from the initial
definition of the problem to the final test result.

Documentation involves both external documentation (such as hierarchy
charts, the solution algorithm, and test data results) and internal
documentation which may have been coded in the program. Program
maintenance refers to changes which may need to be made to a program
throughout its life. Often these changes are performed by a different
programmer from the one who initially wrote the program. If the program
has been well designed using structured programming techniques, the code
will be seen as self documenting, resulting in easier maintenance.

STRUCTURED PROGRAMMING

Structured programming helps you to write effective, error-free programs.
The original concept of structured programming was set out in a paper
published in 1964 in Italy by Bohm and Jacopini. They established the idea
of designing programs using a Structure Theorem based on three control
structures. Since then a number of authors, such as Edsger Dijkstra,
Niklaus Wirth, Ed Yourdon and Michael Jackson, have developed the
concept further and have contributed to the establishment of the popular
term ‘structured programming’. This term now refers not only to the
Structure Theorem itself, but also to top-down development and modular
design.

Top-down development

Traditionally, programmers presented with a programming problem would
start coding at the beginning of the problem and work systematically
through each step until reaching the end. Often they would get bogged down
in the intricacies of a particular part of the problem, rather than considering
the solution as a whole. In the top-down development of a program design,
a general solution to the problem is outlined first. This is then broken down
gradually into more detailed steps until finally the most detailed levels have
been completed. It is only after this process of ‘functional decomposition’ (or
‘stepwise refinement’) that the programmer starts to code. The result of this
systematic, disciplined approach to program design is a higher precision of
programming than was possible before.

’ PROGRAM DESIGN 5

Modular design

Structured programming also incorporates the concept of modular design,
which involves grouping tasks together because they all perform the same
function (e.g. calculating sales tax or printing report headings). Modular
design is connected directly to top-down development, as the steps or
subtasks into which the programmer breaks up the program solution will
actually form the future modules of the program. Good modular design aids
in the reading and understanding of the program.

The Structure Theorem

The Structure Theorem revolutionised program design by eliminating the
GOTO statement and establishing a structured framework for representing
the solution. The theorem states that it is possible to write any computer
program by using only three basic control structures. These control
structures are:

e sequence;
e selection, or IF-THEN-ELSE; and
e repetition, or DOWHILE.

They are covered in detail in Chapter 2.

AN INTRODUCTION TO ALGORITHMS AND PSEUDOCODE

Structured programming techniques require a program to be properly
designed before coding begins, and it is this design process which results in
the construction of an algorithm.

What is an algorithm?

An algorithm is like a recipe: it lists the steps involved in accomplishing a
task. It can be defined in programming terms as a set of detailed,
unambiguous and ordered instructions developed to describe the processes
necessary to produce the desired output from a given input. The algorithm is
written in simple English and is not a formal document. However, to be

useful, there are some principles which should be adhered to. An algorithm
must:

e belucid, precise and unambiguous;
e give the correct solution in all cases; and
e eventually end.

(o

ISIMPLE PROGRAM DESIGNJ

For example, if you want to instruct someone to add up a list of prices on a
pocket calculator, you might write an algorithm like the following:

Turn on calculator
Clear calculator

Repeat the following instructions
Key in dollar amount
Key in decimal point (.)
Key in cents amount
Press addition (+) key
Until all prices have been entered

Write down total price
Turn off calculator

Notice that in this algorithm the first two steps are performed once, before
the repetitive process of entering the prices. After all the prices have been
entered and summed, the total price can be written down and the calculator
can be turned off. These final two activities are also performed only once.
This algorithm satisfies the desired list of properties: it lists all the steps in
the correct order from top to bottom, in a definite and unambiguous fashion,
until a correct solution is reached. Notice that the steps to be repeated
(entering and summing the prices) are indented, both to separate them from
those steps performed only once and to emphasise the repetitive nature of
their action. It is important to use indentation when writing solution
algorithms because it helps to differentiate between the three control
structures.

What is pseudocode?

Flowcharts were once used to represent the steps in an algorithm
diagrammatically, but they were bulky and difficult to draw, and often led to
poor program structure. In contrast, pseudocode is easy to read and write, as
it represents the statements of an algorithm in English. Pseudocode is really
structured English. It is English which has been formalised and abbreviated
to look very like high-level computer languages.

There is no standard pseudocode at present. Authors seem to adopt their
own special techniques and sets of rules, which often resemble a particular
programming language. This book attempts to establish a standard
pseudocode for use by all programmers, regardless of the programming
language they choose. Like many versions of pseudocode, this version has
certain conventions, as follows:

1 Statements are written in simple English.

2 Each instruction is written on a separate line.

3 Keywords and indentation are used to signify particular control
structures.

PROGRAM DESIGN 7

4 Each set of instructions is written from top to bottom, with only one
entry and one exit.

5 Groups of statements may be formed into modules, and that group given
a name.

Pseudocode has been chosen to represent the solution algorithms in this
book because its use allows the programmer to concentrate on the logic of the
problem.

An alternative pictorial method of representing algorithms using Nassi-
Schneiderman diagrams is described in detail in Appendix 1.

CHAPTER SUMMARY

In this chapter, the steps in program development were introduced and
briefly described. These seven steps are:

Define the problem.

Outline the solution.

Develop the outline into an algorithm.

Test the algorithm for correctness.

Code the algorithm into a specific programming language.
Run the program on the computer.

Document and maintain the program.

N O Ul W N

Structured programming was presented as a combination of three separate
concepts: top-down development, modular design, and the use of the
Structure Theorem when designing a solution to a problem.

An algorithm was defined as a set of detailed, unambiguous and ordered
instructions developed to describe the processes necessary to produce the
desired output from the given input. Pseudocode is an English-like way of
representing the algorithm; its advantages and some conventions for its use
were listed.

