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PREFACE

High-speed semiconductor devices are the essential components of digital computers,
telecommunication systems, optoelectronics, and advanced electronic systems as they
can handle analog and digital signals at high frequencies and high bit rates. The
design and development of these devices are vital to the continued growth of the
high-tech industries. This book looks at the process advancements in GaAs device
fabrication and offers insights into the design of devices, their physical operating
principles, and their use in integrated circuits as well as other applications.

The book is organized into five parts: The first part, Chapter 2, discusses gallium
arsenide materials and their crystal properties, the electron energy-band structures,
hole and electron transport, the crystal growth of GaAs from the melt and the defect
density analysis.

The second part consider the fabrication process of gallium arsenide devices and
integrated circuits. Chapter 3 covers the epitaxial growth processes, molecular beam
epitaxy, and the metal-organic chemical vapor deposition techniques used to grow
a single atomic layer. An important feature of the chapter is the research on low-
substrate temperature growth epitaxy systems which have been developed for better
device fabrication. Chapter 4 gives an introduction on wafer-cleaning techniques and
environmental control, wet etching methods and chemicals, and dry etching systems
consisting of reactive ion etching and reactive ion-beam etching methods. The rapid
thermal process is covered briefly, since it has captured much attention in recent years.

Patterning techniques have become hot issues in silicon as well as in gallium arsenide
integrated circuit fabrication. Chapter 5 gives an overview of photolithography and
nonoptical lithography techniques that include electron-beam, X-ray, and ion-beam
lithography systems.

The third part, Chapter 6, discusses device-related physics. Advancements in the
fabrication techniques described in the earlier chapters call for more understanding
of low-dimensional device physics. The epitaxial processes make gallium arsenide and
its related group III-V compounds and solid solutions band structure complex.

xiii
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Scattering theory and ballistic transport are also discussed, and recent studies using
the Monte Carlo method are presented.

The fourth part forms the core of the book. Chapters 7 and 8 develop the ideas
on innovative device design and operating principles sketched out in Chapter 1.
Chapter 7 considers metal-semiconductor contact systems, the Schottky barrier,
ohmic contact formation, and reliability studies. Chapter 8 looks at metal-semi-
conductor field-effect transistors, the fabrication technology, and the models and the
parameters for device analyses. The parasitic effects and noise theory are covered
briefly here and developed later in Chapters 13 and 14, since MESFETs are the
most popular devices in integrated circuits and integrated circuits applications.
Chapter 15 concludes the book with a discussion of high-speed photonic devices and
optoelectronic integrated circuits.

The fifth part, Chapters 9 through 12, discusses the heterostructure field-effect
(HEMT in Chapter 9), potential-effect (HBT in Chapter 10), and quantum-effect
(Chapters 11 and 12) devices. These new devices will have a large impact on high-speed
integrated circuits and optoelectronic integrated circuits (OEICs) applications.

In summary, the most effective way to use the book is as follows:
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In all of the chapters we have tried to give the reader some idea of the history,
even at this early stage of the development of the field. We have included some materials
that are not commonly found in standard textbooks nor in collections of professional
papers. In doing so, we wanted to give the reader as complete as possible a view of
this fast-growing technology.

We are grateful to the many researchers who provided us with information and
illustrations from their works. The comments from several reviewers were particularly
helpful. Special thanks are due to Drs. Ta-Nien Yuan, Nan-Hong Kuo, Chi-Fu Deng,
Simon S. Sze, Han-Ming Hsia, M. Feng, M. F. Chang, P. C. Chao, M. Pilkuhn, M.
Razeghi, C. P. Lee, J. P. Duchemin, L. P. Chen, A. Y. Cho, K. Nakamura, J. Nishizawa,
N. Yokoyama, A. Usui, H. Tanaka, P. S. D. Lin, T. C. L. G. Sollner, H. I. Smith,
C. H. Liu, and S. S. Li for their encouragement, good will, and various assistances, and
to the staff who worked with us at John Wiley and Sons, especially George Telecki,
Cynthia Hess, and Rosalyn Farkas. Last but not least, we wish to thank our wives
Shenn-May Lee and Lih-Nah Hwang.

Hsin-chu, Taiwan C. Y. CHANG

Austin, Texas FraNcis KA1
June 1994
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1

THE DEVELOPMENT OF GALLIUM
ARSENIDE DEVICES AND
INTEGRATED CIRCUITS

1.1 GALLIUM ARSENIDE DEVICE DEVELOPMENT

In modern computer and telecommunication applications the most important semi-
conductors for high-speed devices are silicon and gallium arsenide and its related
ITI-V compounds and solid solutions. Recent advancements in fabrication technology
have produced the superlattice semiconductor, which is an artificial one-dimensional
periodic structure made up of different semiconductor materials with a period of
about 100A. Superlattice semiconductors include silicon-based materials (e.g.,
GeSi/Si) and gallium arsenide—based materials (e.g., AlGaAs/GaAs or InGaAs/GaAs)
[Sze90].

Silicon’s high density and high speed make it a popular material for very large-
scale integrated (VLSI) circuit devices. But the III-V compounds have certain speed
advantages over silicon in their higher carrier mobilities and effective carrier velocities.
The semi-insulating substrates of the III-V compounds provide lower interconnection
capacitances. Research on hybrid material systems based on a heteroepitaxial process
has shown that an advanced architecture can be developed whereby high-speed
GaAs/AlGaAs devices are located on heteroepitaxially grown islands on a silicon
wafer (GaAs on Si), integrated with the silicon VLSI circuits by a suitable metallization
process. There are promising developments as well in optical communications for
silicon wafers, for example, in electronically triggered compound-semiconductor lasers
or light-emitting diodes made in heteroepitaxial materials to avoid RCL delays due
to on-chip interconnecting lines.

The most popular ITI-V compound high-speed devices are field-effect transistors.
These are voltage-controlled devices. The control electrode is capacitively coupled
to the active region of the device, and the charge carriers are separated by an insulator
or a depletion layer [Sze90]. It is impossible to grow a good oxide layer on top of
the GaAs surface to form the MOSFET as in silicon case. The junction field-effect
transistor (JFET) and metal-semiconductor field-effect transistor the MESFET, which

1



2 GALLIUM ARSENIDE DEVICES AND INTEGRATED CIRCUITS

were proposed in 1952 and 1966, respectively, are both devices made of a homogeneous
semiconductor material such as Si or GaAs.

The JFET is basically a voltage-controlled resistor that employs a p—n junction
as a “gate” to control the resistance; thus the current flows between two ohmic
contacts. JFETs have a lower switching speed than MESFETs, mainly because of
the higher input edge capacitances in planar JFET processes. Complementary logic
is possible because p—n and n—p structures can readily be fabricated on the same
wafer. This enables us to design SRAM blocks on chip [Roc90]. A 32-bit RISC
microprocessor [Ras86] was developed using JFET technology. Later McDonnell
Douglas Astronautics Company [Gei87] developed an all-GaAs JFET vector signal
processor. The architecture of this processor is optimized for the matrix—vector
arithmetic operations for digital signal-processing applications.

The MESFET, however, uses a metal-semiconductor rectifying contact (the Schottky
contact) instead of a p—n junction for the gate electrode. Another homogeneous FET
is the permeable-base transistor (PBT), whose fine metal grids are covered with the
semiconductor’s epitaxial overgrowth, as will be discussed in Chapter 12. The PBT
can be operated at high-current density with high transconductance, as is characteristic
of high-speed power devices.

The development of advanced epitaxial growth techniques such as molecular beam
epitaxy (MBE) and metal-organic chemical vapor deposition (MOCVD) techniques
in the 1970s has enabled the fabrication of high-quality semiconductor heterostructures
to be successful. Many other growth techniques, including low-temperature epitaxial
growth, are currently being developed in order to facilitate the fabrication of high-
quality semiconductor heterostructural devices. Heterojunction FETs include now a
large number of family members with different applications. Donor layer devices have
one or more n-type doped layers. The most extensively investigated donor layer device
is the modulation-doped field-effect transistor (MODFET), also called high-electron-
mobility transistor (HEMT). The pseudomorphic HEMT (discussed in Chapter 9) has
a higher mobility than the conventional HEMT, which has a higher cutoff frequency.

The heterojunction bipolar transistor (HBT) was conceived of in 1957, but its
implementation was delayed until the early 1980s due to technological difficulties of
obtaining a perfect interface between dissimilar semiconductors. It offers substantial
improvements in performance over the silicon bipolar transistor. In recent years there
have been rapid advancements in HBTs for high-speed SSI and MSI circuits and
power device applications. Higher g,,’s in HBT are available. Short-channel effects
essentially do not exist in HBTs. The theory and application of HBTs will be discussed
in Chapter 10. The materials systems most studied for HBTs are semiconductors that
have identical lattice constants, such as AlGaAs/GaAs and InGaAs/InP systems.

The III-V compound semiconductors can be used to fabricate quantum-effect
transistors and photonic devices. A typical quantum-effect device is a resonant-tunneling
transistor where the operation distance is comparable to a de Broglie wavelength,
on the order of 200A at room temperature [Sze90]. These small dimensions give
rise to a quantum size effect that alters the band structures and the densities of state
and enhances the device’s transport properties.

The basic building block of the quantum-effect device is the resonant-tunneling
diode. This diode has a double-barrier structure with four heterojunctions and one
quantum well. The number of barriers can be increased, in series, to produce the
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multiple-well device. Many novel current-voltage characteristics can be obtained by
inserting a resonant-tunneling structure into the device to transform it into a resonant-
tunneling hot-electron transistor (RHET) or resonant-tunneling bioplar transistor
(RTBT). These device can be used to form relatively complex circuit functions at high
speed with reduced component counts.

The field of 1D (quantum wires) and OD (quantum dots) devices is new, and
progressing so fast that it is hard to predict future applications. Both systems require
nanoscale lithographic techniques. In the electron device field, where ultrasmall
structures are necessary for speed and integration, arrays of digital processors are
being developed. This architecture may lead to new designs. In the optical field, with
the concentration of electrons and holes over fewer k-states, the lower dimensions of
injection lasers will enable higher gains [Wei91]. Electrooptic effects can have larger
resonances due to the sharpening of the 1D and 0D densities of state compared to
quantum wells.

Another major application of compound semiconductor devices is in optoelectronics.
It is possible to integrate the field-effect, potential-effect, quantum-effect, and photonic
devices to meet the future demands of electronic systems. Chapter 15 discusses the
high-speed aspects of semiconductor photonic devices.

1.2 GaAs FOUNDRY

GaAs foundries have improved their production capacities over the years to meet
the increasing demand for GaAs IC chips. Microwave Journal has done the survey
of U.S. GaAs foundries [ElI91]. Of 14 responding foundries, 12 reported on their
wafer-handling capabilities. There are plans that involve either expanding capacity
to handle wafers of larger diameter or increasing the rate at which wafers of a given
size can be processed.

1.2.1 Private/Commercial Requirements

The General Electric operation expects to remain a completely captive facility through
1994. Avantek has historically maintained its facilities exclusively for its own use, but
it expects 30% of its capacity to be in the commercial market by 1994. Alpha and
Anadigics were alone in relying completely on commercial business in 1991; Harris
and TriQuint were not far behind with a 959, commercial business in 1991. Hughes,
Litton, Raytheon, Texas Instruments, and TRW forecast rapidly increasing commercial
production in 1994.

1.2.2 Analog/Digital Designs

More than 90% of the reported capacity is devoted to the production of analog
devices or circuits. Eight of the facilities are now solely doing analog work. Anadigics,
Texas Instruments, and TRW have small divisions for digital work. ITT maintains
159 digital capacity, and Raytheon expects to be using 20%, of its capacity for digital
circuits by 1994. TriQuint, with 709, of its capacity devoted to digital designs, is the
firm most seriously involved in the digital market.



