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Preface

This monograph describes Gaussian Markov random fields (GMRFs)
and some of its applications in statistics. At first sight, this seems to be
a rather specialized topic, as the wider class of Markov random fields
is probably known only to researchers in spatial statistics and image
analysis. However, GMRFs have applications far beyond these two areas,
for example in structural time-series analysis, analysis of longitudinal
and survival data, spatiotemporal statistics, graphical models, and semi-
parametric statistics.

Despite the wide range of application, there is a unified framework
for both representing, understanding and computing with GMRFs using
the graph formulation. Our main motivation to write this monograph
is to provide the first comprehensive account of the main properties of
GMRFs, to emphasize the strong connection between GMRFs and nu-
merical methods for sparse matrices, and to outline various applications
of GMRFs for statistical inference.

Complex hierarchical models are at the core of modern statistics,
and GMRFs play a central role in this framework to describe the
spatial and temporal dynamics of nature and real systems. Statistical
inference in hierarchical models, however, can typically only be done
using simulation, in particular through Markov chain Monte Carlo
(MCMC) methods. Thus we emphasize computational issues, which
allow us to construct fast and reliable algorithms for (Bayesian) inference
in hierarchical models with GMRF components. We emphasize the
concept of blocking, i.e., updating all or nearly all of the parameters
jointly, which we believe to be perhaps the only way to overcome
problems with convergence and mixing of ordinary MCMC algorithms.
We hope that the reader will share our enthusiasm and that the examples
provided in this book will stimulate further research in this area.

The book can be loosely categorized as follows. We begin in Chapter 1
by introducing GMRF's through two simple examples, an autoregressive
model in time and a conditional autoregressive model in space. We then
briefly discuss numerical methods for sparse matrices, and why they are
important for simulation-based inference in GMRF models. We illustrate
this through a simple hierarchical model. We finally describe various
areas where GMRF's are used in statistics.
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Chapter 2 is the main theoretical chapter, describing the most impor-
tant results for GMRFs. It starts by introducing the necessary notation
and describing the central concept of conditional independence. GMRF's
are then defined and studied in detail. Efficient direct simulation from
a GMREF is described using numerical techniques for sparse matrices.
A numerical case study illustrates the performance of the algorithms
in different scenarios. Finally, two optional sections follow: The first
describes the theory of stationary GMRFs, where circulant and block
circulant matrices become important. Lastly we discuss the problem on
how to parameterize the precision matrix, the inverse covariance matrix,
of a GMRF without destroying positive definiteness.

In Chapter 3 we give a detailed discussion of intrinsic GMRFs
(IGMRFs). IGMRFs do have precision matrices which are no longer
of full rank. They are of central importance in Bayesian hierarchical
models, where they are often used as a nonstationary prior distribution
for dependent parameters in space or in time. A key concept to
understanding IGMRFs is the conditional distribution of a proper
GMRF under linear constraints. We then describe IGMRFs of various
kinds, on the line, the lattice, the torus, and on irregular graphs. A final
optional section is devoted to the representation of integrated Wiener
process priors as IGMRFs.

In Chapter 4 we discuss various applications of GMRFs for hierarchical
modeling. We outline how to use MCMC algorithms in hierarchical
models with GMRF components. We start with some general comments
regarding MCMC via blocking. We then discuss models with normal
observations, auxiliary variable models for probit and logistic regression
and nonnormal regression models, all with latent GMRF components.
The GMRFs may have a temporal or a spatial component, or they relate
to particular covariate effects in a semiparametric regression framework.

Finally, in Chapter 5 we first describe how GMRFSs can be used to
approximate so-called Gaussian fields, i.e., normal distributed random
vectors where the covariance matrix rather than its inverse, the precision
matrix, is specified. The final section in Chapter 5 is devoted to the
problem of how to construct improved and non-GMRF approximations
to hidden GMRFs.

Appendices A and B describe the distributions we use and the
implementation of the algorithms in the public-domain library GMRFLib.

Chapters 2 and 3 are fairly self-contained and do not require much
prior knowledge from the reader, except for some familiarity with
probability theory and linear algebra. Chapters 4 and 5 assume that the
reader is experienced in the area of Bayesian hierarchical models and
their statistical analysis via MCMC, perhaps at the level of standard
textbooks such as Carlin and Louis (1996), Gilks et al. (1996), Robert
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and Casella (1999), or Gelman et al. (2004).

This monograph can be read chronologically. Sections marked with
a ‘%’ indicate more advanced material which can be skipped at first
reading. We might ask too much of some readers patience in Chapter 2
and 3, which are motivated from the various applications of GMRF's for
hierarchical modeling in Chapter 4. It might therefore be useful to skim
through Chapter 4 before reading Chapter 2 and 3 in detail.

This book was conceived in the spring of 2003 but the main body of
work was done in the first half of 2004. We are indebted to Julian Besag,
who read his seminal paper on Markov random fields (Besag, 1974) 30
years ago to the Royal Statistical Society, his seminal contributions to
this field since then, and for introducing LH to MRFs in 1995/1996
during a visit to the University of Washington. We also appreciate his
comments on the initial draft and sending us a copy of Mondal and Besag
(2004).

We thank Hans R. Kiinsch for sharing his wisdom with HR during a
visit to the ETH Ziirich in February 2004, Ludwig Fahrmeir, Stefan
Lang, and Hakon Tjelmeland for many good discussions, and Dag
Myrhaug for providing a quiet working environment for HR. The inter-
action and collaboration with (past) Ph.D. students about this theme
have been valuable, thanks to Sveinung Erland, Turid Follestad, Oddvar
K. Husby, Gilinter Rafler, Volker Schmid, and Ingelin Steinsland. The
support of the German Research Foundation (DFG, Sonderforschungs-
bereich 386) and the department of mathematical sciences at NTNU is
also appreciated. HR also thanks Anne Kajander for all administrative
help.

Hakon Tjelmeland and Geir Storvik read carefully through the initial
drafts and provided numerous comments and critical questions. Thank
you! Also the comments from Arnoldo Frigessi, Martin Skold and Hanne
T. Wist were much appreciated. The collaboration with Chapman &
Hall/CRC was always smooth and constructive.

We look forward to returning to everyday life and enjoying our
families, Kristine and Mona, Valentina and Ulrike. Thank you for your
patience!

HAVARD RUE Trondheim
LEONHARD HELD Munich
Summer 2004
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CHAPTER 1

Introduction

1.1 Background

This monograph considers Gaussian Markov random fields (GMRFs)
covering both theory and applications. A GMRF is really a simple
construct: It is just a (finite-dimensional) random vector following a
multivariate normal (or Gaussian) distribution. However, we will be
concerned with more restrictive versions where the GMRF satisfies ad-
ditional conditional independence assumptions, hence the term Markov.

Conditional independence is a powerful concept. Let © = (1, 22, 23)7
be a random vector, then z; and x3 are conditionally independent given
xg if, for known value of x3, discovering x5 tells you nothing new about
the distribution of ;. Under this condition the joint density 7 (x) must
have the representation

m(x) = m(z1 | z3) m(x2 | z3) 7(23),
which is a simplification of a general representation
m(x) = (x| x2,23) (22 | T3) T(T3).

The conditional independence property implies that 7(zi|ze,z3) is
simplified to m(z1|z3), which is easier to understand, to represent, and
to interpret.

1.1.1 An introductory example

As a simple example of a GMRF, consider an autoregressive process of
order 1 with standard normal errors, which if often expressed as

Ty = Pxi_1 + €, € 15./\/‘(0, 1), |¢ <1 (1.1)

where the index ¢ represents time. Assumptions about conditional
independence are not stated explicitly here, but show up more clearly if
we express (1.1) in the conditional form

Tt | LilyeeeyTp—1 ~ N(¢$t_1, 1) (12)

for t = 2,...,n. In this model xz, and z; with 1 < s < t < n are
conditionally independent given {s41,...,2¢—1} if t —s > 1.

1



2 INTRODUCTION

In addition to (1.2), let us now assume that the marginal distribution
of z; is normal with mean zero and variance 1/(1 — ¢#), which is simply
the stationary distribution of this process. Then the joint density of x is

m(x) = m(z) m(x2|z1) - 7(@n | Tro1) (1.3)
_ 1 1/2 1 7
- (271')"/2 |Q| €xp <_§T‘ Qw ’
where the precision matriz Q is the tridiagonal matrix
1 —¢
- 1+¢* —¢
Q =
-6 1+¢* —¢

—¢ 1

with zero entries outside the diagonal and first off-diagonals. The
conditional independence assumptions impose certain restrictions on
the precision matrix. The tridiagonal form is due to the fact that z;
and z; are conditionally independent for |i — j| > 1, given the rest.
This also holds in general for any GMRF: If Q;; = 0 for i # j,
then x; and z; are conditionally independent given the other variables
{zr, : k # iand k # j} and vice versa. The sparse structure of Q
prepares the ground for fast computations of GMRFs to which we return
in Section 1.2.1.

The simple relationship between conditional independence and the
zero structure of the precision matrix is not evident in the covariance
matrix ¥ = Q !, which is a (completely) dense matrix with entries

1 i
= l—¢2¢| il

O'ij
For example, for n = 7,

1 ¢ ¢* ¢ ¢* ¢° ¢°

¢ 1 ¢ ¢* ¢ @' ¢°

N I B

1@ ¢ ¢ 6 1 o ¢ ¢

ot ¢ o 1 ¢ ¢

P ¢t P PP o 1 ¢

¢° #° ¢t ¢ $* 4 1
It is therefore difficult to derive conditional independence properties from
the structure of X. Clearly, the entries in ¥ only give (direct) information
about the marginal dependence structure, not the conditional one. For

b))
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example, in the autoregressive model, z; and z; are marginally dependent
for any finite s and t as long as ¢ # 0.

Simplifications due to conditional independence do not only appear
for the directed conditional distributions as in (1.2), but also for
the undirected conditional distributions, often called full conditionals
{m(z¢|x_¢)}, where x_; denotes all elements in x but z;. In the
autoregressive example,

N (92441, 1) t=1,
Ty | T_p ~ N (#(.’L’t_1 + $t+1)7 #) 1<t<n, (14)
N(¢$n—17 ]-) t= n,

so z¢ depends in general both on z;_; and z:y;. Equation (1.4) is
important as it allows for an alternative specification of the first-
order autoregressive models through the full conditionals 7 (x4|z_;) for
t=1,...,n. In fact, by starting with these full conditionals, we obtain
an alternative and completely equivalent representation of this model
with the same joint density for x. This is not so obvious as for the
directed conditional distributions (1.2), where the joint density is simply
the product of the densities corresponding to (1.2) for t = 2, ..., n times
the (marginal) density of x;.

1.1.2 Conditional autoregressions

We now make the discussion more general, leaving autoregressive models.
Let x be associated with observations or some property of points or
regions in the spatial domain. For example, z; could be the value of
pixel ¢ in an image, the height of tile ¢ in a tessellation or the relative
risk for some disease in the ith district. Now there is no natural ordering
of the indices and (1.3) is no longer useful to specify the joint density
of . A common approach is then to specify the joint density of a zero
mean GMRF implicitly by specifying each of the n full conditionals

i |y ~ N Z Byzsag ™ | 5 (1.5)
JijFi

which was pioneered by Besag (1974, 1975). These models are also
known by the name conditional autoregressions, abbreviated as CAR
models. There is also an alternative and more restrictive approach to
CAR models, the so-called simultaneous autoregressions (SAR), which
we will not discuss specifically. This approach dates back to Whittle

(1954), see for example, Cressie (1993) for further details.
The n full conditionals (1.5) must satisfy some consistency conditions
to ensure that a joint normal density exists with these full conditionals.
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These reduces to require that Q = (Q;;) with elements

Ki =]
Qij = S
= —KiBi; 1 F g,

is symmetric and positive definite. Symmetry is ensured by ;8;; = £;05;:
for all i # j, while positive definiteness requires x; > 0 for all i =
1,...,n, but imposes further (and often quite complicated) constraints
on the f;;’s. A common (perhaps too common!) approach to ensure
positive definiteness is to require that Q is diagonal dominant, which
means that, in each row (or column) of Q, the diagonal entry is larger
than the sum of the absolute off-diagonal entries. This is a sufficient but
not necessary condition for positive definiteness.

The conditional independence properties of this GMRF can now be
found by simply checking if Q;; is zero or not. If Q;; = 0 then z; and z;
are conditionally independent given the rest, and if ();; # 0 then they are
conditionally dependent. It is useful to represent these findings using an
undirected graph with nodes {1,...,n} and an edge between node i and
j # i if and only if Q;; # 0. We then say that « is a GMRF with respect
to this graph. The neighbors to node ¢ are all nodes j # i with §;; # 0,
hence all nodes on which the full conditional (1.5) depends. Going back
to the autoregressive model (1.4), the neighbors of ¢ are {i — 1,7+ 1} for
1=2,...,n—1,and {2} and {n — 1} of node 1 and n, respectively.

In general the neighbors of i are often those that are, in one way or
the other, in the ‘proximity’ of node 7. The common approach is first to
specify the graph by choosing a suitable set of neighbors to each node,
and then to choose §;; for each pair i ~ j of neighboring nodes ¢ and j.

Figure 1.1 displays two such graphs, (a) a linear graph corresponding
to (1.2) with n = 50 and (b) the graph corresponding to the 16 states of
Germany where two states are neighbors if they share a common border.
The graph in (b) is not drawn to mimic the map of Germany but only to
visualize the graph itself. The number of neighbors in (b) varies between
2 and 9.

Figure 1.2 displays a graph constructed similarly to Figure 1.1(b), but
which now corresponds to the 366 regions in Sardinia. The neighborhood
structure is now slightly more complex and the number of neighbors
varies between 1 and 13 with a median of 5. This is a typical (but
simple) graph for applications of GMRF models.

The case where @ is symmetric and positive semidefinite is of partic-
ular interest. This class is known under the name intrinsic conditional
autoregressions or intrinsic GMRFs (IGMRFs). The density of x is
then improper but, by construction, & defines a proper distribution on
a specific lower-dimensional space. For example, if each row (or column)
of @ sums up to zero, then @Q has rank n — 1 and the (improper) density



