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Foreword 1

This book will help the novice user become familiar with data mining. Basically, data
mining is doing data analysis (or statistics) on data sets (often large) that have been
obtained from potentially many sources. As such, the miner may not have control of the
input data, but must rely on sources that have gathered the data. As such, there are pro-
blems that every data miner must be aware of as he or she begins (or completes) a mining
operation. I strongly resonated to the material on “The Top 10 Data Mining Mistakes,”
which give a worthwhile checklist:

Ensure you have a response variable and predictor variables—and that they are correctly
measured.

Beware of overfitting. With scads of variables, it is easy with most statistical programs to
fit incredibly complex models, but they cannot be reproduced. It is good to save part of
the sample to use to test the model. Various methods are offered in this book.

Don’t use only one method. Using only linear regression can be a problem. Try
dichotomizing the response or categorizing it to remove nonlinearities in the response
variable. Often, there are clusters of values at zero, which messes up any normality
assumption. This, of course, loses information, so you may want to categorize a
continuous response variable and use an alternative to regression. Similarly, predictor
variables may need to be treated as factors rather than linear predictors. A classic
example is using marital status or race as a linear predictor when there is no order.
Asking the wrong question—when looking for a rare phenomenon, it may be helpful
to identify the most common pattern. These may lead to complex analyses, as in item 3,
but they may also be conceptually simple. Again, you may need to take care that you
don’t overfit the data.

Don’t become enamored with the data. There may be a substantial history from earlier
data or from domain experts that can help with the modeling.

Be wary of using an outcome variable (or one highly correlated with the outcome
variable) and becoming excited about the result. The predictors should be “proper”
predictors in the sense that (a) they are measured prior to the outcome and (b) are not a
function of the outcome.

Do not discard outliers without solid justification. Just because an observation is out of
line with others is insufficient reason to ignore it. You must check the circumstances that
led to the value. In any event, it is useful to conduct the analysis with the observation(s)
included and excluded to determine the sensitivity of the results to the outlier.

.- 4%
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Extrapolating is a fine way to go broke—the best example is the stock market. Stick
within your data, and if you must go outside, put plenty of caveats. Better still, restrain
the impulse to extrapolate. Beware that pictures are often far too simple and we can be
misled. Political campaigns oversimplify complex problems (“My opponent wants to
raise taxes”; “My opponent will take us to war”) when the realities may imply we have

some infrastructure needs that can be handled only with new funding, or we have been
attacked by some bad guys.

Be wary of your data sources. If you are combining several sets of data, they need to
meet a few standards:

* The definitions of variables that are being merged should be identical. Often they are
close but not exact (especially in meta-analysis where clinical studies may have
somewhat different definitions due to different medical institutions or laboratories).

Be careful about missing values. Often when multiple data sets are merged, missing
values can be induced: one variable isn’t present in another data set, what you thought
was a unique variable name was slightly different in the two sets, so you end up with
two variables that both have a lot of missing values.

How you handle missing values can be crucial. In one example, I used complete cases
and lost half of my sample—all variables had at least 85% completeness, but when put
together the sample lost half of the data. The residual sum of squares from a stepwise
regression was about 8. When I included more variables using mean replacement, almost
the same set of predictor variables surfaced, but the residual sum of squares was 20.

I then used multiple imputation and found approximately the same set of predictors but
had a residual sum of squares (median of 20 imputations) of 25. I find that mean
replacement is rather optimistic but surely better than relying on only complete cases.
If using stepwise regression, I find it useful to replicate it with a bootstrap or with
multiple imputation. However, with large data sets, this approach may be expensive
computationally.

To conclude, there is a wealth of material in this handbook that will repay study.

Peter A. Lachenbruch, Ph.D.,

Oregon State University

Past President, 2008, American Statistical Society
Professor, Oregon State University

Formerly: FDA and professor at Johns Hopkins University;
UCLA, and University of lowa, and

University of North Carolina Chapel Hill
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A November 2008 search on Amazon.com for “data mining” books yielded over 15,000
hits—including 72 to be published in 2009. Most of these books either describe data mining
in very technical and mathematical terms, beyond the reach of most individuals, or
approach data mining at an introductory level without sufficient detail to be useful to the
practitioner. The Handbook of Statistical Analysis and Data Mining Applications is the book that
strikes the right balance between these two treatments of data mining.

This volume is not a theoretical treatment of the subject—the authors themselves recom-
mend other books for this—but rather contains a description of data mining principles and
techniques in a series of “knowledge-transfer” sessions, where examples from real data
mining projects illustrate the main ideas. This aspect of the book makes it most valuable
for practitioners, whether novice or more experienced.

While it would be easier for everyone if data mining were merely a matter of finding and
applying the correct mathematical equation or approach for any given problem, the reality
is that both “art” and “science” are necessary. The “art” in data mining requires experience:
when one has seen and overcome the difficulties in finding solutions from among the many
possible approaches, one can apply newfound wisdom to the next project. However, this
process takes considerable time and, particularly for data mining novices, the iterative process
inevitable in data mining can lead to discouragement when a “textbook” approach doesn’t
yield a good solution.

This book is different; it is organized with the practitioner in mind. The volume is
divided into four parts. Part I provides an overview of analytics from a historical perspec-
tive and frameworks from which to approach data mining, including CRISP-DM and
SEMMA. These chapters will provide a novice analyst an excellent overview by defining
terms and methods to use, and will provide program managers a framework from which
to approach a wide variety of data mining problems. Part II describes algorithms, though
without extensive mathematics. These will appeal to practitioners who are or will be
involved with day-to-day analytics and need to understand the qualitative aspects of the
algorithms. The inclusion of a chapter on text mining is particularly timely, as text mining
has shown tremendous growth in recent years.

Part III provides a series of tutorials that are both domain-specific and software-
specific. Any instructor knows that examples make the abstract concept more concrete, and
these tutorials accomplish exactly that. In addition, each tutorial shows how the solutions
were developed using popular data mining software tools, such as Clementine, Enterprise
Miner, Weka, and STATISTICA. The step-by-step specifics will assist practitioners in learning
not only how to approach a wide variety of problems, but also how to use these software

xviil
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products effectively. Part IV presents a look at the future of data mining, including a treat-
ment of model ensembles and “The Top 10 Data Mining Mistakes,” from the popular presen-
tation by Dr. Elder.

However, the book is best read a few chapters at a time while actively doing the data
mining rather than read cover-to-cover (a daunting task for a book this size). Practitioners
will appreciate tutorials that match their business objectives and choose to ignore other
tutorials. They may choose to read sections on a particular algorithm to increase insight into
that algorithm and then decide to add a second algorithm after the first is mastered. For
those new to a particular software tool highlighted in the tutorials section, the step-by-step
approach will operate much like a user’s manual. Many chapters stand well on their own,
such as the excellent “History of Statistics and Data Mining” and “The Top 10 Data Mining
Mistakes” chapters. These are broadly applicable and should be read by even the most
experienced data miners.

The Handbook of Statistical Analysis and Data Mining Applications is an exceptional book
that should be on every data miner’s bookshelf or, better yet, found lying open next to their
computer.

Dean Abbott
President

Abbott Analytics

San Diego, California



Preface

Data mining scientists in research and academia may look askance at this book because
it does not present algorithm theory in the commonly accepted mathematical form. Most
articles and books on data mining and knowledge discovery are packed with equations
and mathematical symbols that only experts can follow. Granted, there is a good reason
for insistence on this formalism. The underlying complexity of nature and human response
requires teachers and researchers to be extremely clear and unambiguous in their terminol-
ogy and definitions. Otherwise, ambiguities will be communicated to students and readers,
and their understanding will not penetrate to the essential elements of any topic. Academic
areas of study are not called disciplines without reason.

This rigorous approach to data mining and knowledge discovery builds a fine founda-
tion for academic studies and research by experts. Excellent examples of such books are

The Handbook of Data Mining, 2003, by Nong Ye (Ed.). Mahwah, New Jersey: Lawrence
Erlbaum Associates.

The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 274 edition, 2009,
by T. Hastie, R. Tibshirani, & J. Friedman. New York: Springer-Verlag.

Books like these were especially necessary in the early days of data mining, when analyti-
cal tools were relatively crude and required much manual configuration to make them work
right. Early users had to understand the tools in depth to be able to use them productively.
These books are still necessary for the college classroom and research centers. Students must
understand the theory behind these tools in the same way that the developers understood it
so that they will be able to build new and improved versions.

Modern data mining tools, like the ones featured in this book, permit ordinary business
analysts to follow a path through the data mining process to create models that are “good
enough.” These less-than-optimal models are far better in their ability to leverage faint
patterns in databases to solve problems than the ways it used to be done. These tools
provide default configurations and automatic operations, which shield the user from the
technical complexity underneath. They provide one part in the crude analogy to the auto-
mobile interface. You don’t have to be a chemical engineer or physicist who understands
moments of force to be able to operate a car. All you have to do is learn to turn the key
in the ignition, step on the gas and the brake at the right times, turn the wheel to change
direction in a safe manner, and wvoila, you are an expert user of the very complex technology
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