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THEORETICAL PERFORMANCE OF TWO ULTRA-HIGH EFFICIENCY PHOTOVOLTAIC CONCEPTS

Fletcher Osterle

Camnegie Mellon University
Mechanical Engineering Department
Pittsburgh, PA 15213

ABSTRACT

Two photovoltaic energy conversion concepts
capable of producing electricity at substantially higher
efficiencies than ccnventional PV systems are the thermo-
photovoltaic (TPV) concept and the tandem-cell (TC)
concept. The theoretical performance of devices designed
to manifest these concepts is investigated in this paper. It
appears that significant efficiency increases are possible
with these two concepts if one is prepared to accept the
inherent added complexity. For example, in the TPV
device, for a maximum allowable diffuser temperature of
2500 deg K, a theoretical efficiency of 65% is predicted.
Theoretical efficiencies near 50% are predicted for the TC
device.

1. ENERGY IRRADIATION

The energy irradiation of unconcentrated and
undiluted solar radiation upon a photovoltaic (PV)
convertor in the earth's orbit and oriented normal to the
sun's rays is given by

G, =F,cT: 1)

where Fcg is the convertor-to-sun view factor, (Rg /
Reo)2- where Rg is the radius of the sun and Reg is the
radius of the earth's orbit (Fcs = 2.161 x 10°-9), & is the

Stefan-Boltzmann constant (5.67 x 10 W/m K#4) and Ty is
the temperature of the sun (considered a blackbody at 5770
K). G¢ works out to be 1358 W/m. Only a fraction of
this irradiation can be converted into work.

2. EFFICIENCY OF A PV DEVICE

In their famous 1961 paper [1], Shockley and
Queisser defined an "ultimate” efficiency for any device
employing a photovoltaic process in which: (1) photons
with energy less than Eg (the gap energy) produce no
effect, and (2) each photon with energy greater than Eg
produces an electronic charge at the terminals at a voltage

They assumed further that the PV device is subject
to blackbody radiation from the sun. They found a
maximum efficiency of 44% at an optimum gap energy of
1.1 eV, corresponding closely to silicon. This efficiency
is an overestimate since: (1) not all the electron-hole pairs
generated by absorbed photons arrive at the terminals-and
those that do are at a voltage less than the gap energy, and
(2) the capture coefficient is not a step-function of energy
(zero below the gap energy and unity above).

If we retain only the step-function capture
coefficient assumption, the generated current density is
given by

I.=q1tl'-‘“f K,du 0]

where q is the electronic charge, K, is the spectral photon
intensity of solar radiation, u is the photon energy, and ug
is the gap energy (Eg). Ky is given by

2

e

- where zg is a dimensionless energy given by

o 0 4
“ kT, @

In these equations h is Planck's constant, u is frequency, ¢
the speed of light and k Boltzmann's constant. In terms of
dimensionless energy the generated current density can be
written _ .

15 GT: z

1 =qF i dz, )
kn“

es-1
%0

where zgg is Eq. (4) evaluated for ug. The actual current
density is given by the familiar rectifier equation
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where V is the terminal voltage and the second term is the
so called dark current density with Ig the saturation current
- density. A reasonable estimate of the minimum value of
the saturation current density (amps/m2) as a function of
energy gap is [2]
5
L=15x10"¢" v}

The cell voltage would be selected so as to maximize the
power density where the power density is simply

P=1V ®

The convertor efficiency is simply the ratio of the
maximum power density determined in this way divided
by the irradiation. Thus

P
= R

n G, b))
Calculations reveal that in this case the maximum
efficiency is about 26% at a gap energy of about 1.4 eV,
corresponding this time closely to GaAs.

We will now look at two concepts for attaining
higher efficiencies assuming the availability of convertors
with any desired gap energy.

3. THE THERMOPHOTOVOLTAIC (TPV) CONCEPT

A In the TPV energy convertor the solar radiation is

concentrated before being directed to the cell, and a diffuser
(assumed to be a blackbody) is interposed between the
concentrator and the cell. Now, radiation from the sun,
concentraied by a factor n by the concentrator, is

intercepted and absorbed by the diffuser. The diffuser -

emits hemispherical radiation all of which strikes the cell.
Since the transformation of beamed radiation into diffuse
radiation lowers its temperature, the radiation now received
by the cell is shifted spectrally toward the lower
frequencies, hence lower energies. This spectral shift
results in fewer photons with energies exceeding the gap
energy striking the cell, but since photons with less than
the gap energy are not absorbed by the cell, they can be
reflected back to the diffuser by a reflector placed
immediately behind the cell resulting in less energy loss.
The net effect on the efficiency is not obvious. We will
now determine these efficiencies as a function of
concentration, n, and gap energy, Eg.

First of all we will determine the temperature of the
diffuser. The irradiation on the diffuser is

Gy=nF,cT (10)

wlimFdsisd:esameachs. The radiation from the
diffuser toward the cell (with a view factor of one) is

E‘-xj Hodu a1

where Hy, is the spectral energy intensity given by u Ky.
Of this
EJ Hudu

is absorbed by the cell and
5
nf H,du

passes through the cell and is reflected back to the diffuser.
In terms of dimensionless energy, anenugybalanceon
the diffuser can be written

3
nF,oT'= 150‘1',f 24, (12
x
o

edi-1
where T is the diffuser temperature and

" 13
ORI a3)

Eq. (12) is an equation for Ty as a function of n. The
results are shown in Table 1 in terms of Eg and n

Table 1. Diffuser Temperature, Tq (deg K)

——
= 1 10 [100 ]1000 | 10000
0.8 [1039 [1330 |1803 |2636 [4192
1.0 |1195 [1502 | 1987 |2816 |4336
1.2 | 1345 |1668 |2168 |3000 |4497
14 |1490 |1830 |2345 |3185 |4668
1.6 |1632 |1987 |2519 |3370 |4845

We see from this table that the required diffuser

temperature increases with both the gap energy and the

concentration ratio. We will now proceed to calculate the

maximum attainable power at these values of Eg and n.
The generated current density is given by



_lSqu: Z,

- : 1dzd (14)
T ced-

This Ig is substituted for the Ig given by Eq. (5) for the
power output, which will depend on the terminal voltage.
V. The terminal voltage which maximizes the power is

found and the corresponding power per unit area of:

collected radiation (i.e., before concentration) is
determined. The results of these calculations for the
maximum power are shown in Table 2.

Table 2. Maximum Power Density, Pmax (Watts/m2)

By 2 |
1 10 100 1000 | 10000
0.8 521 579 614 608 540
1.0 645 689 713 703 636
1.2 735 767 785 773 712
14 827 839 827 769

804
1.6 860 874 883 869 815

The corresponding conversion efficiency is obtained by
dividing these power densities by G (1358 W/m?2).

For example, if n is 100 and E is 1.4, the required
diffuser temperature is 2345 deg K, the maximum power
density is 839 W/m2 corresponding to a theoretical
conversion efficiency of 62%. The conclusions which can
be drawn from these results are as follows:

1) The higher the gap energy the higher the diffuser
temperature and power density.

2) There is an optimum concentration ratio of about 100
for all gap energies.

4. THE TANDEM CELLL CONCEPT

In this concept PV cells are stacked up one on top
of the other in decreasing order of gap energies with the
cell with the highest gap energy receiving the direct
radiation from the sun. The radiation which is at too low
an energy to be absorbed by the first cell passes through
to the second cell which has a lower gap energy. The
second cell absorbs a fraction of this energy and passes the
remainder on to the third cell and so on. Each cell acts as
an independent power producer with its own optimum
voltage and maximum power. The current generated in
the first cell is given by Eq. (5) with zgg corresponding to
the gap energy of the first cell. The maximum power
available from the cell is determined in the manner
described in the text following Eq. (5). The current
generated in the second cell is also given by Eq. (5) with
the lower limit on the integral corresponding to the gap
energy of the second cell and the upper limit

corresponding to the gap energy of the first cell.
Subsequent cells are treated in the same way and the total
power output calculated as the sum of the power outputs
of the individual cells.

Table 3 shows the results of such calculations for a
tandem cell convertor with the individual gap energies as
listed.

Table 3. Tandem-Cell Power Density, W/m2

CellNo. [E P Total P

1 i.% 13?.% —
2 2.2 1044
3 1.8 125.0

3 14 126.5

3 1.0 93.9

6 0.6 26.5 658.9

The theoretical efficiency works out to be about 49%. We
see from this table that the major contributors to the
power output are the cells with gap energies near 1.6 eV.
Adding more cells at the high gap-energy end increases the
efficiency but at a decreasing rate (e.g., three more cells at
gap energies of 3.0, 3.4, and 3.8 eV results in a
theoretical efficiency only two points higher at 51%.

However, it must be noted that in this tandem-cell
concept with each cell operating as an independent power
producer the wiring would be very complicated for as
many as six cells. Also, the need for materials with
different gap energies means requiring very different
processing technologies, the cost of which might be
prohibitive. Therefore, tandem devices with only two or
three cells or perhaps series-connected devices in which
only two terminals' are required might be preferable.
Finally, it should be realized that since only blackbody
radiation has been considered throughout this paper the
efficiencies have been overestimated.

5. CONCLUSIONS

It appears, then, that significant efficiency increases
are possible with these two concepts if one is prepared to
accept the inherent added complexities. Concentration of
the radiation in the tandem-cell concept would be
beneficial but would appear to be an unjustified extra
complexity.
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ABSTRACT

This paper discusses design features of
high efficiency crystalline solar cells. The
design requirements are established by con-
sideration of minimizing optical and elec-
tronic losses in the cell. Some innovations
in processing technologies, for fabrication
of cells based on these designs, are also
presented. Design 1ssues of multijunction
cells and up-to-date status of the perfor-
mance of crystalline cells are also given.

Introduction:

During the past decade there have:been

many  significant advances in all areas of,

photovoltaics (PV). On the commercial side,
silicon and amorphous silicon modules are now
available for a variety of terrestrial appli-
cations at a cost, typically $4 - 5 per Watt,
that is competitive with other energy costs
for such applications. In the laboratory,
development of existing technologies and
exploration of new materials have yielded
significant improvements in efficiency with
promise of better long term stability and
lower production costs. Despite the rela-
tively low level of federal research support,
high efficlency technologies based upon
crystalline semliconductors have kept pace
with the advances in amorphous and poly-
crystalline approaches. As can be seen from
Table I, many configurations of crystalline
single junction cells, in silicon (Si) and
III-V compounds, have reached efficiencies
exceeding 20%. The multijunction cells,
which use more than one material to provide
better response over the broad spectrum, have
attained performance levels consistent with
theoretical predictions of providing about
50% better efficiency than the single junc-
tion cells, as seen from Table II.

This paper will focus on these high effi-
ciency technologies in order to elucidate the
optical and electronic design of solar cells
and processing techniques necessary to make
the above mentioned achievements possible.

Optical Design

The optical design of a solar cell in-
volves incorporation of features that can
effectively capture and transmit the incident
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broad-band optical flux into the solar cell
and improve the flux distribution so as to
create the most useful distribution of photo-
generated carriers within the cell. Semicon-
ductors like Si, GaAs and InP have high
refractive indices, resulting in high reflec-
tion coefficient. Hence, it is important to
minimize optical reflectance at the front
surface of the cell. A conventional approach
to accomplish this is to deposit an anti-
reflection (AR) coating(s) on the front side
of the cell. Design of such a coating is
well known in optics where a single layer AR
coating is used for producing a null in the
reflectance at a given wavelength (A). The
relation between the film thickness (t), its
refractive index (n) and the wavelength for
zero reflectance is given by:

t = A/4n

and n = )2

(n; * n,
where n, and n, are the refractive indices
of the media above the cell and that of the
cell, respectively. The materials used for
such films include $i0,, Si,N,, Ta,0s, ZnS and
MgF,. The reflectance of a single layer AR
coated cell can be calculated according to
formulas given in many text books on optics
[1,2]. Fig.l gives measured reflectance
(alr/cell interface) as a function of wave-
length for a Si cell coated with a 900 A
layer of Si,;N,, showing a null at 720 nm. It
may be pointed out that 1if this cell 1is
encapsulated, the reflectance at the
encapsulant/cell interface would be changed,
corresponding to the dotted line in Figure 1,
which does not exhibit a null. 1In order to
produce a null when encapsulated, the index
of the coating should be 2.3. The dashed
line shows the reflectance for such a film.

In a good optical design, it is not suf-
ficient to merely minimize reflected power.
The null location is, however, dictated by
the following condition which relates to the
internal spectral response, SR (A), the input
solar spectrum, ¢(A), and the cell transmit-
tance [1 - R(A)]: '

i.e [ SR * [1 - R(A)I* (W) dA
is maximum. This condition optimizes the
short circuit current of the cell.



The null region of the reflectance can be
significantly extended if the cell surface is
rough or textured. This effect is seen from
Figure 2 which shows the reflectance of a
textured cell with an AR coating, consisting
of 700A thick Si,N, on 100 A of Sio, For
comparison, we have shown reflectance of
polished Si wafer, coated with a similar
film; also included are the reflectance
characteristics of uncoated polished and
uncoated textured silicon, illustrating the
advantage of AR coating. In order to quantify
the reflectance, these data may be weighted
with respect to the input solar spectrum
(AM1.5) to yield the average reflectance
value of ~3% for AR coated textured silicon

compared to ~10% for AR coated polished
silicon [3].

An added advantage of texturing is that
it converts normally incident 1light to
oblique incidence within the cell. This
feature leads to increased optical path
length and light trapping; the latter is due
to the fact that some of the scattered light
is total internally reflected at the back-
surface. For this reason texturing has been
effectively employed for conventional Si
solar cells and is becoming even more impor-
tant to develop "thin" silicon solar cells
(which offer advantage of reduced bulk
recombination) .

Until recently, texturing to increase the
effective optical path length for GaAs, InP
and other direct band-gap semiconductors was
not deemed necessary because of their high
intrinsic abscrption (typical absorption
depth ~2-3um). In these cells a low reflec-
tance broad-band effect is generally attained
by means of a double layer AR coating, typi-
cally ZnS/MgF,. Currently, there is consi-
derable interest in studying light trapping
in direct band-gap semiconductors for the
following reason. Radiative recombination is
the dominant mechanism in photo-generated
carrier-loss for solar cells fabricated in
high quality direct band gap semiconductors.
Since the radiative recombination is accom-
panied by emission corresponding to the band-
edge energy, it 1is possible to trap and
reahsorb this light within the active region
of the cell. Figure 3 shows schematically
one approach of applying GaAlAs layers to
reflect a portion of isotropically emitted
light from reradiated photons in a thin film
GaAs solar cell [4].

AnotRer feature in optical design is
minimization of the shadowing due to metal
contacts., Typically a suitable grid design
involves a compromise between the series
resistance of the cell and the optical shad-
owing. Two approaches have been used to over-
come this problem. In one case the contacts

(and the junction) are located on the back-
side of the cell leaving the entire fronc
surface for photon impingement (Figure 4).
This design requires that the front surface
be well passivated and that the minority
carrier diffusion length in the base region
be very large [5]. The other approach is to
employ a prismatic cover on the cell in a way
that the cover deflects light above the metal
grid into the open cell regions [6].

Electronic Deéign

The electronic design pertains to the
most efficient collection of photo-generated
carriers. 'In order to translate these into
requirements for material/cell related elec-
tronic parameters it is necessary to consider
the basic equation of the current for a cell
operating at a voltage V," I, (V), i.e

Tean(V) =1, - I (V)

where I, and I, represent the photo-generated
and the dark currents, respectively. Expres-
sions for I, and I, have been derived for
many cell configurations; however, from qual-
itative considerations it is clear that opti-
mum cell performance requires maximization of
the photo-generated current and minimization
of the dark current [7]. Fortunately, most of
these demands can be met simultaneously by
suitable choice of the material and cell
parameters. For a given semiconductor the
optimization of both photogeneration and dark
current require: (1) low bulk recombination,
(2) low carrier recombination at each inter-
face, (3) reduced metal/semiconductor contact
area. The demands on the dark current re-
quire, in addition, the choice of the cell
parameters to minimize the injection compo-
nent of the cell dark current. 1In the fol-
lowing we will briefly discuss how these
parameter requirements can be met for high
efficiency design.

Bulk recombination:

The short circuit current of a solar
cell is strongly dependent on the minority
carrier lifetime (t) and related dilifusion
length (L). In turn, lifetime is dependent
on the quality of the material determined by
chemical purity and structural perfection.
Clearly, to obtain highest efficiencies it is
essential to start with substrates of high
quality and to maintain the high lifetime
throughout the cell fabrication. The highest
efficiency silicon solar cells have been
fabricated on Float Zone material of minority
carrier lifetime ~10 m sec. The lower cost
materials such as Czochralski (CZ), cast and
ribbon materials have lower lifetime. In the
case of CZ wafers the lifetime is primarily
limited by impurities, whereas in the case of
ribbons and cast wafers by both defects and



