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Preface

The biota of the earth is being altered at an unprecedented rate. We
are witnessing wholesale exchanges of organisms among geographic
areas that were once totally biologically isolated. We are seeing massive
changes in landscape use that are creating even more abundant succes-
sional patches, reductions in population sizes, and in the worst cases,
losses of species. There are many reasons for concern about these
trends. One is that we unfortunately do not know in detail the conse-
quences of these massive alterations in terms of how the biosphere as
a whole operates or even, for that matter, the functioning of localized
ecosystems. We do know that the biosphere interacts strongly with the
atmospheric composition, contributing to potential climate change.
We also know that changes in vegetative cover greatly influence the
hydrology and biochemistry of a site or region. Our knowledge is weak
in important details, however. How are the many services that
ecosystems provide to humanity altered by modifications of ecosystem
composition? Stated in another way, what is the role of individual
species in ecosystem function? We are observing the selective as well
as wholesale alteration in the composition of ecosystems. Do these
alterations matter in respect to how ecosystems operate and provide
services? This book represents the initial probing of this central ques-
tion. It will be followed by other volumes in this series examining in
depth the functional role of biodiversity in various ecosystems of the
world.

This effort is a result of a program co-sponsored by the Interna-
tional Union of Biological Sciences (IUBS), the Scientific Committee
of Problems of the Environment (SCOPE), and the Man and the
Biosphere Program (MAB) of UNESCO. The Scientific Steering Com-
mittee of the Ecosystem Function of Biodiversity component consists
of D.L. Hawksworth, B. Huntley, P. Lasserre, E. Medina, H.A.
Mooney (Chairman), V. Neronov, E.-D. Schulze, and O.T. Solbrig.

A symposium held near Bayreuth, Germany, between October 1 —4,
1991, was the beginning of this volume. Most of the contributors to
this effort were present at the meeting which was financially supported
by IUBS, SCOPE, MAB, Electric Power Research Institute, German
Science Foundation (SFB 137), and German Ministry for Technology
and Research (BMFT) through the Bayreuth Institute of Terrestrial
Ecology (BITOK).

Bayreuth and Stanford E.-D. Schulze
H.A. Mooney



Foreword
Biodiversity and Ecosystem Function:
Need We Know More?

P.R. Ehrlich

The answer to the question posed in the title, from the viewpoint of
science, clearly is “yes”; from the viewpoint of taking action to pre-
serve biodiversity, the answer is equally clearly “no”.

Let us consider the “yes” first. There is a great deal of uncertainty
about the way in which the diversity of the populations and species in
an ecosystem is related to the functional properties of the ecosystem.
More research is badly needed; the lack of understanding is a major
lacuna in our picture of how the world works.

Of special interest to humanity is the relationship of biodiversity to
the variety of services provided by ecosystems and, in particular, to the
stability of the flow of those services, such as the maintenance of the
gaseous composition of the atmosphere, preservation of soils, recycl-
ing of nutrients, and provision of food from the sea. Ecologists gener-
ally accept the viewpoint expressed in the “rivet popper” analogy
(Ehrlich and Ehrlich 1981) that a policy of continually exterminating
populations and species eventually will dramatically compromise eco-
system services. It remains impossible to specify when “eventually”
might be, as was emphasized in the original analogy:

Ecosystems, like well-made airplanes, tend to have redundant subsystems and other
“design” features that permit them to continue functioning after absorbing a certain
amount of abuse. A dozen rivets, or a dozen species, might never be missed. On the
other hand, a thirteenth rivet popped from a wing flap, or the extinction of a key
species involved in the cycling of nitrogen, could lead to a serious accident. (pp.
X1 =XIIT)

This volume surveys the present state of knowledge about biodiversity
and its influence on some aspects of ecosystem functioning and sug-
gests research agendas that could improve our understanding. It is
conceivable that some general rules for the potential impact of popu-
lation/species extinction on the properties of ecosystems will eventual-
ly be attained.

Scientifically, the effort to uncover such rules is very important.
But to turn to the “no,” we already know enough about the manifold
values of biodiversity (of which involvement in biogeochemical cycles
is just one) fo take action now. Detailed studies of natural and per-
turbed systems to yield information on ecosystem responses to extinc-
tions are not required for developing a sound conservation policy.
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The rivet popper analogy suggests what the proper overall policy
should be: It is essential that biodiversity be preserved (and restored)
wherever possible. No more relatively undisturbed natural systems
should be cleared to make way for development, which should be con-
fined to areas already strongly altered by humanity. Rates of global
change should be slowed so as to give natural ecosystems more time to
adjust. Such a conservative conservation policy is mandatory even from
the standpoint of major ecosystem processes, no matter what the level
of redundancy in the functioning of different populations or species in
biogeochemical cycles or other ecosystem processes. That is because the
roles played by various organisms in communities (and thus in ecosys-
tems) are often not at all transparent; either one of two herbivores or
two insectivores do not necessarily have equivalent impacts on the
ecosystem functioning. Detailed knowledge of relationships among the
organisms of an ecosystem is required before one could be reasonably
secure in declaring that the removal of a given component population
or species will have no significant detrimental impact on the function-
ing of the system, and that information is usually not available.

Three examples from community ecology illustrate how difficult it
may be to draw conclusions on ecosystem impacts without detailed
knowledge of the system. Observations taken over a short interval (a
“snapshot”) will often miss essential elements, as will a lack of
understanding of keystone roles. In the first instance, some years ago
Charles Birch and 1 searched in vain for caterpillars of Cactoblastis
cactorum on isolated clumps of imported Opuntia cactus in Queens-
land, Australia. If we had not known the story, we would never have
concluded that one small herbivore, an introduced biological control
agent, was responsible for removing almost all the Opuntia from 25
million hectares of Queensland and New South Wales and for keeping
the area free of serious infestation (DeBach 1974). In the Opuntia
case, there is no question that important ecosystem services were
altered first by the importation of the cactus and then by the importa-
tion of the moth — indeed, agriculture was made impossible and
natural ecosystems were transformed over some 12 million hectares
until the cactus was brought under control.

In contrast, our group has observed several natural extinctions of
Bay checkerspot butterfly (Euphydryas editha) populations, whose
caterpillars are usually much easier to find than those of Cactoblastis,
and those extinctions have not resulted in discernable increases in pop-
ulations of the butterfly’s foodplants or changes in the functioning of
the serpentine grassland ecosystems in which they occurred. The
reasons for the different ecosystem impacts of these two lepidopterous
herbivores are well understood but would not have been obvious from
short-term studies by a scientist unfamiliar with the two ecosystems.

In a more complicated example, Gretchen Daily and her colleagues
(1992b) have found that in subalpine Gunnison County, Colorado,
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red-naped sapsuckers (Sphyrapicus nuchalis, a woodpecker that drills
wells into shrubs and trees and feeds on the sap that flows from them)
require willow clumps in close proximity to aspen stands in order to
breed. The sapsuckers, by far the most abundant primary cavity
nesters in the region, also make nest holes that are subsequently used
by tree and violet-green swallows (7achycineta bicolor and T.
thalassina). If a patch of aspens lacks willows, sapsuckers will not
breed there and neither will swallows. The sapsuckers appear to func-
tion as keystone herbivores (Ehrlich and Daily 1988) since they cause
heavy mortality among the willows, provide nest cavities to a variety
of secondary hole-nesting birds other than the swallows, and also
supply sugary sap to a wide range of vertebrates and invertebrates that
steal it from the wells. A more obscure keystone in the system is the
fungus (Fomes igniarius) that causes heart-rot in the aspens. The sap-
suckers appear able to excavate nests only in infected trees; if the
fungus were wiped out, there would be no sapsuckers, no swallows,
and no high-quality food supplements for many species (Daily 1992a).

The probable impact on the local ecosystem of the removal of a
keystone component of the sapsucker complex from the subalpine
community is difficult to predict. Perhaps most or all of the subalpine
system’s biogeochemical functions would remain unchanged, or per-
haps increases willow survival (or some unexpected effect mediated by
subsequent changes in populations of other organisms interacting
with the sapsuckers) would have an effect on those functions over the
long term.

In the Opuntia example, policymakers would be well justified in
taking steps to conserve Cactoblastis or in reintroducing it if it should
go extinct. Whether preservation of the red-naped sapsuckers could be
justified on the basis of their contributions to the ecosystem services
is not known — and the question could likely only be answered by
allowing them to go extinct.

The rivet popper principle provides the scientific guidance to cover
the sapsucker example; the birds should be protected because of the
uncertainty over the effects of random deletions of populations or
species from ecosystems and because of the near certainty of the ef-
fects of a policy of continuing deletions. Unless humanity is willing
to run a planet-wide experiment to see how well depauperate com-
munities will support ecosystem services (Ehrlich 1991), it generally
should operate on the principle that all reductions of biodiversity are
to be avoided simply because of potential threats to ecosystem func-
tioning.

The incompatibility between current rates of destruction of that
diversity and the acquisition of knowledge about its ecosystemic con-
sequences also argues strongly for a conservative approach to setting
broad policy. Of course, so do the nonecosystemic reasons — ethical,
esthetic, and economic — for preserving our only known living com-
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panions in the universe (Ehrlich and Ehrlich 1981). All decision-
makers should be informed of this broad policy recommendation,
which should form the background for taking action in specific cases.

Research on specific cases to reduce the uncertainty can help signif-
icantly with the evaluation of alternative courses of action, the op-
timal allocation of limited funds to conservation efforts, and the
relative merits of competing parties’ interests. If ecologists are to per-
suade decision-makers to make biologically sound decisions, then they
will often need the kind of detailed knowledge that can be generated
by properly prosecuted research.

Ecologists find themselves in a difficult position. Given the funds
to do the research, they can greatly improve the efficiency of decision-
making about the preservation of biodiversity and ecosystem services
in specific cases. This is true even in situations in which high levels of
uncertainty persist. Sound scientific guidance can be given about deci-
sions at a level of P = 0.50, just as it can about decisions at the level
of P =0.99 (even though many scientists have not yet learned to think
in terms of providing policy advice with high levels of uncertainty).

A standard way for politicians to avoid taking unpalatable actions,
however, is to call for and offer to finance more research. Ecologists
must not permit inadequate funding of their field to cause them to
concentrate on garnering research grants to the exclusion of pressing
for action on the basis of knowledge already available. On the other
hand, without much more research, many conservation efforts are
likely to be carried out inefficiently, reducing the chances of their
ultimate success. Our job is to push politicians to start acting now on
the basis of present knowledge while they invest the necessary re-
sources in the research required to increase the efficiency of their ac-
tions. We can no more afford to wait for more knowledge to start
preserving ecosystem services than an earthquake-prone area can af-
ford to wait for the ability to predict the time and magnitude of earth-
quakes precisely before starting to strengthen buildings, improve fire-
fighting capabilities, and make plans for evacuation and disaster
relief. Once preparations have been begun, research to develop a better
predictive ability, better fire-fighting techniques, more secure struc-
tures, and so on will continue to pay dividends in lives saved and
damage averted. Action and research should go hand in hand.

Acknowledgments. 1 am grateful to Gretchen C. Daily, Anne H.
Ehrlich, Harold A. Mooney, Jonathan Roughgarden, and Peter
Vitousek for most helpful comments on the manuscript.
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