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CONVECTION AND CHAOS IN FLUIDS



'Taking Three as the subject to reason about -
A convenient number to state -
We add Seven, and Ten, and then multiply out

By One Thousand diminished by Eight.

'The result we proceed to divide, as you see,
By Nine Hundred and Ninety and Two:
Then subtract Seventeen, and the answer must be

Exactly and perfectly true......

- Lewis Carroll

To

Ujjaini
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FOREWORD

Complicated behaviour of simple systems has made it possible to
construct models for various hydrodynamic instabilities. These model
systems usually consist of a set of nonlinear coupled differential
equations or nonlinear maps. The relevance of these systems to actual
hydrodynamics, as demonstrated by recent experiments, makes it possible
to discuss hydrodynamic instabilities at a fairly elementary level.
These notes are an attempt at making the complex behaviour of fluids

accessible to senior undergraduate students.

Fully developed turbulence which permits no simplification has
been virtually omitted. By dealing exclusively with viscous fluids,
the vast literature of conservative dynamical systems has not been
touched upon. The available analytic approximation techniques
(perturbation theory in one form or another) for hydrodynamic flows
and the relevance of certain prototype dissipative dynamical systems

to the study of hydrodynamic instabilities form the core of the book.

I have benefitted from teaching a one-semester course on '"Order
and chaos in nature'" at IIT, Kanpur and from a series of lectures at

the University of Manchester.

Jayanta K. Bhattacharjee
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Chapter I

ONSET OF CONVECTION

Convection in fluids was studied from a quantitative angle
in the early nineteen hundreds by Lord Rayleigh. The
arrangement consisted of a liquid confined between two
parallel plates and heated from below. For convenience

in setting up the theory it is desirable to consider the
plates to be infinite in extent. In practice the typical
lateral dimension (L) of the plates is always finite.

To satisfy the theoretical idealisation one needs to have
L >> d, the separation between the plates. It is well
known that the fluid heated from below does not begin
convecting unless a critical temperature difference ATc
is established between the plates. The hydrostatically
unstable situation of density increasing upwards is
stabilised by viscosity and thermal conductivity until the
density gradient is large enough to cause the upper layers
to tumble down and the hotter lower layers to rise,.
Instead of AT (the temperature difference between the
plates), one usually talks about a dimensionless number R,

called the Rayleigh number, defined as

3
R (1.1)

where o 1s the thermal expansion coefficient, A is the
thermal diffusivity, v is the kinematic viscosity and g is
the acceleration due to gravity. Obtaining the critical
Rayleigh number for the onset of convection will be the
purpose of this chapter.

We begin by writing down the hydrodynamic equations
that govern the velocity (V) and temperature (T) fields of

the fluid. The velocity field satisfies the Navier-Stokes



equation

& >
BV, G = -8 g oawv?y, (1.2)
ot p

where P is the pressure and p is the density. The temper-

ature field satisfies a diffusion equation

o , &.¥)r = avir. (1.3)
ot
We notice that these equations admit a steady conduction
solution if v = 0 and
T, -T
“ P m 2k s . _ AT
T=T =T + 3 z= T 32 - (1.4)

Here we have taken the plate separation to be in the
z-direction and the infinite lateral extent of the plates
makes the problem one—dimensional.Tlis the temperature of

the lower plate and T, is that of the upper one. The

2
pressure and density in the steady state are Ps and P

and have to satisfy
+

VP

s

P

= g . (1.5)
8

The question we need to ask now is whether this solution
for the conduction state is stable. To test the stability
of this state against convection we imagine that small
perturbations 63, 8T, 8p and &P are made about the
conduction state solution and study the equations govern-
ing the time development of the perturbations, taking care
to linearize the equations in the perturbations., If the
resulting time dependence of the perturbations is such
that they decay exponentially in time, then the unper-
turbed state is stable. If on the other hand the pertur-
bations donot die out, then the original state is unstable
against the perturbation and an instability sets in.

This is the principle of linear stability analysis and



this is what we shall now try to implement.

At this point it is useful to introduce the Boussinesgq
approximation. In this approximation one considers the
fluid incompressible except when dealing with the buoyancy
term which drives the convection. Thus 8p appears only in
the coefficient of § and can be set equal to zero every-
where else. In particular this means that the velocity

field satisfies the incompressibility condition in the form

V.Y = o . (1.6)

The perturbation 8V satisfies this constraint since the

steady state velocity is zero. Thus
V.ov = 0 . (1.7)
The linearized version of Eq.(l1.2) now reads
> +
S S F N AT L 107 S Y
(at v V9)6v = - + 3 = - + g —
Ps Ps Ps Ps
(1.8)
Taking the divergence of either side leads to
> >
v oer = (2.V)sp = - g 21000 (1.9)
when use is made of Eq.(1.7). The partial derivative with
respect to z leads to
- 2
2 9”48
v 2;% = = g ———7£1 . (1.10)
9z

& ->
Denoting the components of &v by Vs vy and v_, we have
z

from Eq.(1.8), for the z-component of the velocity

o _ 2 - -1 3 _ Sp
(at \)V)vz 5, 52 8P g o (1.11)
Taking the laplacian,
2 .3 2 - _ 1 -2 3(sp) _ g 2
v (at vV )vz 5 v 7 5 V©ép
s S
2 2 2
=-B—(v2—?—7>6p=-5—(3—+3—2)5p, (1.12)



4

having used Eq.(1.10) in the second step. Using the

definition of the thermal expansion coefficient

1 3
o = =~ 9P
5 3T (1.13)
we can rewrite Eq.(1.12) as
2 2
V2 (2 - vy = ag(2s + oyst (1.14)
z 39X oY

Turning to Eq.(1.3), the linearized version is easily

seen to be

(- - avdyer (63 V) T
t s

= AT
= @, 5, (1.15)

We scale all lengths by d, time by dz/v, the field §T
by AT and the velocity field by A/d. The dimensionless

quantities are defined as

(X,v,2)/4d = (x,y,z) , (1.16a)
% = tv/d?, (1.16b)
6 = 6T/ AT, (1.17a)
w = v d/r, (1.17b)
o = v/A, (1.17¢)

and in terms of these definitions Eqs.(1.14) and (1.15)

become
2 2
v2 (- v¥yw = (- ¢+ T ye (1.18)
9T 2 2
3x 3y
and
(62 - v2)e = w . (1.19)

We now seek solutions to the above equations which
correspond to the formation of convection rolls. The
rolls would be characterised by a two-dimensional wave

number in the x-y plane with components k and k and
X y



hence the space-time dependent solutions would be of the
form

i(kxX+kyY)+pT
0(z) e s (1.20)

e(x,y,z,t)

i(kxx+k Y)+pT
w(x,y,z,t) = W(z) e y . (1.21)

where 0(z) and W(z) satisfy (from Eqs.(1.18) and (1.19))

(D2 - az)(Dz - a2 - p)W = RaZ0 R (1.22)
(02 - a% - gp)o = -W, (1.23)
with D = %; and 'a',the dimensionless wave number, given by
a? = ks kha? . (1.24)
* ¥y

Eqs.(1.22) and (1.23) are eigenvalue equations for the
relaxation rate p. If the resulting p is such that Re(p) (0,
fluctuations decay to zero as t > « and the initial state
is stable. If however Re(p)>0, the initial conduction
state is unstable against the "roll" solution. The perturba-
tions grow in time and are eventually arrested due to the
nonlinear terms.

Before proceeding further, we need to specify the
boundary conditions on W(z) and A(z). Since the
temperatures of the top and bottom plates are maintained?¥
the temperature perturbations vanish at z=0 and 1. Since
the plates are stationary, we must have W=0 at z=0 and 1.
If the plates are rigid , then the x and y components of

the dimensionless velocity field (u and v respectively) too

vanish at the boundaries. This implies that %% and %%
are zero on the surfaces z=0 and 1. The continuity
condition now leads to %g = 0 on z=0 and 1. Thus the

rigid boundary conditions are

* We assume high thermal conductivity for the plates.



W = DW = © = 0 on z = 0 and 1. (1.25)

For analytic calculations it is often convenient to use
free boundaries. This implies that there are no stresses

on the horizontal surfaces, leading to

du _ _ 3w

vz % 0 (1.26)
and

av Iw

— = - = =0 .2

3z 3y (1.27)
at z=0 and 1, since on the plates, w = 0 independent of x
and y. The continuity equation now yields

2 -
D" W = 0 . (1.28)

Thus the free boundary conditions are

W = D°W = 0 = 0 onz =0 and 1. (1.29)

We first treat the free boundary conditions., It is clear
immediately that solutions satisfying the boundary condi-

tions can be written as

wo= A sin (nmz) (1.30)
0 = Bn sin (nmz) , (1.31)
where n is an integer . Self-consistent determination of

An and Bn lead to the eigenvalue equation

2_2 2

(n“1° + a )2

# p(nzTT2 + a2) = Ra2

Det =0



To obtain the critical value of R, we find the value Ro
corresponding to p=0 as

R o~ ET Eal., (1.33)
It is clear from the roots of the quadratic in p(Eq(1.32))
that for R < Ro’ p is always negative and hence the per-
turbations decay in time, while for R > Ro’ p is positive,
leading to instability. The fact that the roots are real
is related to the theorem that the instability is station-
ary. The critical value Rc of R is now determined by
finding the minimum of Ro. Hence we need n=1 and have
to minimize the resulting Ro as a function of 'a'. This

leads to

4
R = 21T (1.34)
c 4
and
2
a® w L. (1.35)
e 2

Thus we find the value of the Rayleigh number at which
convection begins and the wavelength of the convection
cells. Notice that the theory does not tell us what the
shape of the cells will be — that is determined by the x
and y components of the wavenumber vector. The critical
Rayleigh number is determined by the magnitude of the wave-
number alone and hence is not affected by the shape.

In an actual laboratory experiment, the rigid boundary
conditions are the natural ones. So we really need to
find RC by enforcing the boundary conditions of Eq.(1.25).
To do this we eliminate O from Eqs.(1.22) and (1.23) and

obtain

2 2

(D —az)(Dz—az—p)(Dz-az-Op)w = -Ra“W. (1.36)

For p=0, the condition for critical R, we have



23 2

(2-a)3 w =

with the boundary conditions

W=DW =0 onz =0

and

(Dz—az)zw = 0 on z

-Ra W

s (1.37)
and 1 (1.38)
= 0 and 1, (1.39)

the last boundary condition following from Eq.(1.22) with

® = 0 on the boundaries.

are going to be symmetric or
centre plane z = 1/2.
to lower values of R. The

written as

The solutions of Eq.(1.37)

antisymmetric about the

The symmetric solutions correspond

even solution for W can be

- = -1
W = A1 cosh Yl (z 7+ A2 coshY2 (z 2) +
+ A, cosh y, (z l) (1.40)
3 3 2
where Yl’ YZ and Y3 are the three roots of
(Yz = 32)3 + Ra 0 (1.41)
and Al, A.2 and A3 are three undetermined constants to be

fixed from the boundary conditions.

conditions of Egs.(1.38) and
homogeneous equations in Al,
condition determines Ro as a

minimiZation with respect to

R ~ 1708
& =
and

a  ~ 3.12,

& =
significantly different from

Eqs. (1.34) and (1.35). The

Using the boundary
(1.39),
A, and A_.

2 3
function of 'a' and the

we find three

The solvability

'a' leads to

(1.42)

(1.43)

the free boundary values of

experimental data are in good



agreement with the above values of Rc and a_.

We now show how closed form analytic approximants to
the critical values of RC and a_ quoted in Eqs. (1.42)
and (1.43) can be obtained . We return to Egs. (1.22) and
(1.23) and make use of the fact that the instability 1is
going to be stationary and set p=0 in determining RO. We
look for the symmetric solutions and make a change of
origin so that z ranges from -1/2 to 1/2. The solution

for © can then be expanded in a cosine series as

0(z) = % A cos (2n+l)7mz . (1.44)
n=0 n

With this expansion for 0(z) inserted in Eq.(1.22), we
can solve for W(z) under the boundary conditions that

W= DW= 0 at z = 1/2. Returning to Eq.(1.23) and deman-
ding consistency leads. to determination of R0 in terms of

! Minimization with respect to 'a' yields Rc'

a 1

We illustrate with a single-mode truncation for a(z),

i.e. keep only the n=0 term in the expansion of Eq.(l.44).

Inserting 0 (z) = Ao cosmz in Eq.(1.22) and solving for
W(z),we get for the even solutions
R A a2
W(z) = A cosh az + Bz sinh az - ——%—2——3—5 cosTz .
n
L (1.45)
The boundary conditions yield
Acosh 2 + B ginn2 - (1.46a)
2 2 2 '
and 2
a a a a TTROAOa
inh = + g i i 2y = -
a A sin 3 B(2 cosh 7 * sinh 2) > N

(1.46b)

determining A and B in terms of AO, R and 'a'. 1Inserting
o



