CONCE IN

E G E R

R

EIGHTH EDITION

CONCEPTS IN BIOLOGY

eighth edition

Eldon D. Enger Frederick C. Ross

Delta College

WCB/McGraw-Hill

A Division of The McGraw-Hill Companies

Project Team

Developmental Editor Kennie Harris Production Editor Sue Dillon Marketing Manager Julie Joyce Keck Cover Design Jamie E. O'Neal Art Editor Jennifer L. Osmanski Photo Editor Nicole Widmyer Permissions Coordinator Mavis M. Oeth

President and Chief Executive Officer Beverly Kolz
Vice President, Director of Editorial Kevin Kane
Vice President, Sales and Market Expansion Virginia S. Moffat
Vice President, Director of Production Colleen A. Yonda
Director of Marketing Craig S. Marty
National Sales Manager Douglas J. DiNardo
Executive Editor Michael Lange
Advertising Manager Janelle Keeffer
Production Editorial Manager Renée Menne
Publishing Services Manager Karen J. Slaght
Royalty/Permissions Manager Connie Allendorf

Copyedited by Julie Bach

Cover photo © Stephen Dalton/Photo Researchers, Inc.

Photo research by Connie Mueller

The credits section for this book begins on page 449 and is considered an extension of the copyright page.

Copyright © 1997 Times Mirror Higher Education Group, Inc. All rights reserved

Library of Congress Catalog Card Number: 95-81357

ISBN 0-697-27205-2

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the publisher.

Printed in the United States of America

TECHNOLOGY SUPPLEMENTS

EXPLORATIONS

Explorations in Human Biology and Explorations in Cell Biology and Genetics are interactive CD-ROMs by George B. Johnson. Explorations are referenced at the ends of related chapters of Concepts in Biology by a CD icon (). The Explorations contain activities that can be used by an instructor in lecture and/or placed in a lab or resource center for student use. This interactive software consists of modules that cover key topics discussed in a biology course. The CD-ROMs are available for use with Macintosh and IBM Windows computers. Explorations are referenced in the following chapters:

Explorations in Human Biology

1	ω
Chapter 4	Cystic Fibrosis, Module 1 Active Transport, Module 2
Chapter 7	Smoking and Cancer, Module 6
Chapter 10	Constructing a Genetic Map, Module 14 Heredity in Families, Module 15
Chapter 14	Pollution of a Freshwater Lake, Module 16
Chapter 18	Cystic Fibrosis, Module 1 Active Transport, Module 2 Evolution of the Heart, Module 5
Chapter 19	Life Span and Lifestyle, Module 3 Diet and Weight Loss, Module 7

Explorations in Cell Biology and Genetics

and Gen	etics	
Chapter 4	Cell Size, Module 2 Active Transport, Module 3	
Chapter 5	Enzymes in Action: Kinetics, Module 7	
Chapter 6	Oxidative Respiration, Module 8 Photosynthesis, Module 9	
Chapter 7	Reading DNA, Module 15 Gene Regulation, Module 16 Making a Restriction Map, Module 17	
Chapter 10	Constructing a Genetic Map, Module 11 Heredity in Families, Module 12	
Chapter 18	Active Transport, Module 3	

LIFE SCIENCE ANIMATIONS

Life Science Animations by Wm. C. Brown Publishers is a set of six videotapes containing 66 animations of physiological processes integral to the study of biology. Topics covered include chemistry, genetics, and reproduction. The animations are keyed to the Concepts in Biology text by a videotape icon (•••) ahead of the legends for the following figures:

Figure 2.9 Tape 1 (1)	Fluoride Ion Formation of an Ionic Bond
Tape 1 (1)	Formation of an Ionic Bond
Table 3.1	A Summary of the Types of Organic Molecules Found in Living Things
Tape 4 (42)	Structure and Function of Antibodies
Figure 4.1 Tape 1 (2)	Cells—Basic Structure of Life Journey into a Cell
Figure 4.6 *Tape 6 (2)	Osmotic Influences on Cells Osmosis
Figure 4.7	Facilitated Diffusion
Tape 1 (4)	Cellular Secretion
Figure 4.8	Active Transport
*Tape 6 (3)	Active Transport Active Transport Across a Cell Membrane
Figure 4.9	Phagocytosis
Tape 1 (3)	Endocytosis
Figure 5.2	Enzyme-Substrate Complex Formation
*Tape 6 (1)	Lock-and-Key Model of Enzyme Action
Figure 6.2	Biochemical Pathways That Involve
	Energy Transformation
Tape 5 (46)	Journey into a Leaf
Figure 6.3	Just the Right Amount of Power for the Job
Tape 1 (11)	ATP as an Energy Carrier
Figures 6.5, 6.8	Oxidation-Reduction (Redox) Reactions
Tape 1 (6)	Oxidative Respiration (including Krebs Cycles)
Figures 6.7, 6.10	Glycolysis
Tape 1 (5)	Glycolysis
Figures 6.9,	The Electron Transport Process
6.12, 6.19	The Electron Transport Chain and the
Tape 1 (7)	Production of ATP

Figure 6.19	The Light-Energy Conversion Stage	Figure 8.10	A Comparison of Plant and Animal Mitosis
Tape 1 (8)	The Photosynthetic Electron Transport	Tape 5 (50)	Mitosis and Cell Division in Plants
	Chain and Production of ATP	Figure 9.1	Life Cycle
Figure 6.21	The Carbon Dioxide Conversion Stage	Tape 2 (13)	Meiosis
Tape 1 (9,10)	C ₃ Photosynthesis, C ₄ Photosynthesis	Figure 9.15	Synapsis and Crossing-Over
Figures 7.6, 7.7	The Process of DNA Replication	Tape 2 (14)	Crossing-Over
Tape 2 (15)	DNA Replication	Figure 10.2	A Pair of Homologous Chromosomes
Figures 7.8, 7.9	Transcription of mRNA in Prokaryotic and	Tape 4 (40)	A, B, O Blood Types
Tape 2 (16)	Eukaryotic Cells Transcription of a Gene	Figure 14.5 Tape 5 (52)	Energy Flow through an Ecosystem Energy Flow through an Ecosystem
Figure 7.13	Protein Synthesis	Ei 15 0 15 11	The Code of Code The Nitrogon Code
Tape 2 (17)	Protein Synthesis	Figures 15.9, 15.11 Tape 5 (51)	The Carbon Cycle, The Nitrogen Cycle Carbon and Nitrogen Cycles
Figure 8.1	The Cell Cycle		
Tape 2 (12)	Mitosis		

^{*}Physiological Concepts of Life Science videotape.

PREFACE

Purpose

We are proud to present the eighth edition of *Concepts in Biology*. The origin of this book is deeply rooted in our concern for the education of college students in the field of biology. With each new edition, we've worked hard to maintain our original goal of writing a book that is useful, interesting, and user-friendly.

We continue to believe that large, thick books intimidate introductory-level students, who often are already anxious about taking science courses. Lengthy books also tend to put off those students who are simply uninterested in science. In addition, larger books are more expensive, and their production expends more natural resources. The printing of our text on recycled paper reflects this philosophy.

Organization

Concepts in Biology is arranged in a traditional manner, progressing from the basic to the complex. It begins with a discussion of the meaning, purpose, and future of biology as a scientific endeavor. It then covers biological concepts as an expanding spiral of knowledge. Thus, chemistry is followed by cell biology, cell division, genetics, ecology, evolution, anatomy and physiology, and the diversity and classification of living things.

The Eighth Edition

As always, we greatly appreciate the suggestions of users of the text and reviewers of the current edition. We have carefully considered their comments and responded by making appropriate changes.

The text material has been significantly rewritten to ensure a flow of ideas that will best enable students to link information in a logical way. "For Your Information," "Experience This," and feature boxes ("How Science Works" and "Outlooks") were revised to include topical information of interest to students.

The illustrations are a vital and integrated part of the text. They have been carefully chosen to clarify textual material and provide new insights. Fully one-quarter of all the illustrations have been revised. Captions have been critically examined for accuracy and appropriateness. Following is a list of the chapters in which significant changes and improvements have been made.

Chapter 1: What is Biology? Coverage of the scientific method was enhanced for better student understanding of the idea that the scientific method is not a lock-step approach to problem solving, but is more flexible.

Chapter 2: Simple Things of Life This chapter has been reworked to better focus student attention on the energy associated with chemical bonds and how that relates to the formation of molecules typically found in living things. This information is presented at the outset of the chapter and is dealt with throughout. The concepts of mixtures and suspensions are presented early in the chapter and are correlated with the information on chemical bonding. These points should better enable the student to understand the nature of matter and chemical reactions. The section dealing with chemical reactions has been improved to provide a better foundation for biochemical information presented in later chapters.

Chapter 4: Cell Structure and Function Because the concepts of diffusion, osmosis, dialysis, active transport, phagocytosis, and facilitated diffusion are so important, they have been given their own headings: "Getting Through Membranes" and "Controlled Methods of Transporting Molecules." Information formerly presented in other chapters has been gathered together at this point and again related to the basic chemical principles presented in chapters 1, 2, and 3. A more detailed introduction is provided for the concepts of iso-, hyper-, and hypotonic solutions.

Chapter 6: Biochemical Pathways This chapter has undergone major changes. The first portion of the chapter focuses on energy and cells, particularly cellular respiration and photosynthesis. However, the discussion of photosynthesis is short and is presented to underscore the concept of energy flow and utilization among living things. The remainder of the chapter concentrates on respiration, both aerobic and anaerobic. The basics of oxidation-reduction reactions are also featured early in this chapter and are continued throughout.

Because of the difficulty associated with the topics in chapter 6, three levels of presentation have been developed. Level 1 is the most basic, providing the student with only the most elementary understanding. Level 2 develops the concepts by exploring the topic in greater depth, while level 3 presents the greatest detail. Students are advised to ask

their instructor which level of understanding they should try to achieve. For allied health students, it is probably advisable to utilize all three levels. They can use level 1 material as an introduction to the topic, level 2 to more slowly increase their understanding, and level 3 to attain the degree of understanding required for further biological and clinical courses dealing with respiration and associated concepts.

Chapter 11: Diversity Within Species The chapter has been retitled, and a new "Outlooks" reading, "Biology, Race, and Racism," has been added. The term allele frequency has been used throughout when appropriate, rather than the less precise term gene frequency. A new section on the nature of species and the difficulty in defining a species has also been added.

Chapter 12: Natural Selection and Evolution This chapter also carries a new title, "Natural Selection and Evolution," making the point that these two concepts are not the same. A new section summarizing the causes of evolution has been added.

Chapter 13: Speciation and Evolutionary Change Two new sections have been added: "The Tentative Nature of Evolutionary Thought" and "Human Evolution."

Chapter 15: Community Interactions New information on integrated pest management has been added, and the material on succession has been moved to chapter 14.

Chapter 17: Behavioral Ecology A new section on human behavior has been added.

Chapter 19: Nutrition: Food and Diet A new section has been added on the technical definition of obesity and how to calculate it. Many sections have been modified to incorporate the most recent information about nutrition.

Chapter 21: Human Reproduction, Sex, and Sexuality A new "How Science Works" reading has been added on "Speculation on the Evolution of Human Sexual Behavior" In addition, recent material on the role of genes in homosexuality has been added. Several new illustrations about the following topics appear: Turner's syndrome, Klinefelter's syndrome, descent of the testes, Barr body, and sperm production.

Chapter 22: The Origin of Life and Evolution of Cells A new "How Science Works" reading on RNA as the first genetic material has been added to this chapter.

Chapter 25: Plantae A new "Outlooks" reading on the plant materials we use for spices has been added.

Chapter 26: Animalia A new "Outlooks" reading on parthenogenesis has been added.

Aids to the Reader

Concepts in Biology, eighth edition, contains a number of features intended to actively involve students in the learning process. Each chapter contains these elements:

Chapter Outline As part of the chapter opening, the outline lists the major headings in the chapter.

Purpose This statement explains the value of each chapter to the understanding of a complete biology course.

For Your Information This introductory section provides interesting and timely information related to the chapter content.

What's Ahead? At the beginning of each chapter, a list of questions focuses students' attention on the nature of the material and engages their interest.

Topical Headings Throughout the chapter, headings emphasize the essential concepts for understanding biology as a science.

Full-Color Graphics Numerous line drawings and photographs illustrate concepts or associate new concepts with previously mastered information. Every illustration emphasizes a point or helps teach a concept.

Chapter Summary At the end of each chapter, the summary clearly reviews the concepts presented.

Thinking Critically This feature focuses on issues that challenge the student to think logically through problems and arrive at conclusions based on the concepts of the chapter.

Experience This Using this feature, students can apply knowledge gained from the chapter.

Questions This review of the material helps students determine whether they have mastered the contents of the chapter. Page references are provided to send students back into the chapter to find the answers.

Chapter Glossaries The glossary at the end of each chapter immediately reinforces the terms necessary for student comprehension of concepts.

Comprehensive Glossary The glossary at the end of the text serves as a single resource for essential terminology used throughout.

Phonetic Pronunciations You will notice that phonetic spellings follow most glossary entries. The following pronunciation system is used:

An unmarked vowel (a,e,i,o,u) at the end of a syllable has the long sound, as in the word "prey" (pra). An unmarked vowel followed by a consonant has the short sound, as in the phonetic spelling of the word "cell" (sel).

A vowel in the middle of a syllable may have a mark over it to indicate a short or long sound. A straight bar (\bar{a}) indicates the long sound, and a small arc (\check{a}) , the short sound. The word "acetyl" $(\check{a}\text{-set}'\ 1)$ shows these two marks plus an accent (') that indicates stress on the second syllable. Some phonetic spellings may also have a double accent (''). The double-accented syllable is stressed, too, but not as much as the single-accented syllable; for example, res" pĭ rā' shun.

Writing Style and Readability The Fry Readability Graph has been used to verify the appropriateness of the language level for an introductory biology course. The informal, easy-to-read style has been praised by reviewers and adopters.

Boldface type is used to focus student attention on a key term when it is first defined in the text. Italic type emphasizes important terms, phrases, names, and titles. Graphics—often in the form of logical flow diagrams, analogy diagrams, and charts—clarify the text narrative.

Support Materials

The following supplementary materials have been developed to accompany *Concepts in Biology*, eighth edition:

The Instructor's Manual/Test-Item File provides a rationale for the use of each chapter as well as explanations about *Experience This* and an answer key for text questions.

Classroom Testing Software, a computerized test bank of the test items in the instructor's manual, is available in DOS, Windows, and Macintosh formats.

The **Laboratory Manual** features 29 carefully designed, class-tested exploratory investigations that may be used in the laboratory.

The Laboratory Resource Guide provides information on acquiring, organizing, and preparing laboratory equipment and supplies. The guide follows the arrangement of exercises in the laboratory manual, enabling instructors to efficiently select learning experiences most appropriate for their students. Estimates of the time required for students to complete individual laboratory experiences are also provided, along with answers to questions in the laboratory manual.

A revised Student Study Guide, in a reformatted version, features an overview as well as multiple-choice, fill-in-the-blank, and label/diagram/explain questions. Answers to the objective questions are provided in an appendix to allow for immediate

feedback. The study guide is available through your college bookstore.

Seventy-five full-color **transparencies** are available free to adopters of *Concepts in Biology*. The transparencies are taken from the text and represent the important figures that merit extra visual review and discussion.

Supplementary Materials

How to Study Science

The new second edition of this workbook, by Fred Drewes of Suffolk County Community College, offers students helpful suggestions for meeting the considerable challenges of a science course. It gives practical advice on such topics as how to take notes, how to get the most out of laboratories, and how to overcome science anxiety. Exercises at the end of each chapter are appropriate for either classroom assignments or independent study.

A Life Science Lexicon/A Life Science Living Lexicon CD-ROM

The printed reference book, A Life Science Lexicon, by William Marchuk of Red Deer College, is now also available on CD-ROM as A Life Science Living Lexicon. Both products help introductory-level students quickly master the vocabulary of the life sciences, carefully explaining the rules of word construction and derivation while giving definitions of important terms. The Living Lexicon also provides illustrations, audio pronunciations, and student-interactive quizzing and notetaking capabilities.

Life Science Animations Videotapes

Life Science Animations by Wm. C. Brown Publishers is a set of six videotapes containing 66 animations of physiological processes integral to the study of biology. Topics covered include chemistry, genetics, and reproduction. The animations are keyed to Concepts in Biology through the use of a small videotape icon(•••) alongside the figure legend. A list of the animated figures in this text appears on page xii.

Interactive Explorations CD-ROMs

Explorations in Human Biology and Explorations in Cell Biology and Genetics are interactive CD-ROMs by George B. Johnson, available for use with both Mac and Windows computers. The Explorations offer interactive modules related to key topics covered in biology courses. The CD-ROMs can be used by an instructor in lecture and/or placed in a lab or resource center for students. Explorations are referenced at the ends of appropriate chapters of Concepts in Biology. A list of the Explorations topics and their corresponding chapters is provided on page xii.

BioSource Videodisc

BioSource Videodisc, by Wm. C. Brown Publishers and Sandpiper Multimedia, Inc., features twenty minutes of animations and nearly 10,000 full-color illustrations and photos, many from leading WCB biology textbooks.

Biology Startup

Biology Startup is a five-disk set of Macintosh tutorials by Myles C. Robinson and Kathleen Pace of Grays Harbor College. This software is designed to help nonmajors students master fundamental biological concepts such as chemistry and cell biology. Biology Startup can be a valuable addition to a resource center and is especially helpful to students enrolled in developmental education courses or those who need additional assistance to succeed in an introductory biology course.

ACKNOWLEDGMENTS

A large number of people have knowingly or unknowingly helped us write this text. Our families continued to give understanding and support as we worked on this revision. We acknowledge the thousands of students in our classes who have given us feedback over the years concerning the material and its relevancy. They were the best possible source of criticism.

We gratefully acknowledge the invaluable assistance of the following reviewers throughout the development and preparation of the manuscript:

Gail F. Baker, LaGuardia Community College
Don Collier, John C. Calhoun State Community College
Chris Dokos, Yuba College
James F. Duke, John C. Calhoun State Community College
Elizabeth B. Gardner, Pine Manor College
Herbert T. Hendrickson, University of North Carolina
Danny G. Herman, Montcalm Community College
Roberta M. Meehan, University of Northern Colorado
David W. Schroder, Lincoln College

Anita Walker, Los Angeles Southwest College

TO THE STUDENT

This text is designed to make understanding biological principles easier. Each chapter is subdivided into topics separated by headings. These headings are listed in the outline at the beginning of each chapter. The subdivisions contain logical chunks of material; they should make learning more manageable for you.

Following the outline is a section entitled "Purpose." This section gives you some hints about how the chapter fits in with the other parts of the book. It directs you to where you are going and lets you know why you are going there. By paying careful attention to the purpose, you will be able to tell when you have attained your goal and why this goal was set.

As with most science classes, you are likely to find biological vocabulary a difficult hurdle. To help you approach this "foreign language," important terms are printed in boldface the first time they are used in the text. Each new term is defined at least three times: first, in the narrative when the term becomes a functional part of biological thought; second, in the chapter glossary at the end of the chapter in which it first appears; and third, in the comprehensive glossary at the end of the book. As you review a chapter, you should mentally define each of the new terms. If you are unsure of the meaning of a term, check yourself against the definition in the book. In this edition, we have also provided a phonetic pronunciation guide for each glossary term so that you will learn to pronounce each term correctly as you learn its meaning.

Numerous illustrations appear throughout the text. These illustrations should do more than just attract your attention. Each has been carefully chosen to help you understand a point or tie a concept to something you already know. Use these illustrations and their captions to learn and understand the ideas presented.

Each chapter ends with a summary. As you finish studying a chapter, read the summary, sentence by sentence. If you come across information that seems new, you may not have thoroughly studied part of the chapter.

Following the summary we have presented a thoughtprovoking situation entitled "Thinking Critically." It asks you to use your newfound knowledge and previous experience in considering the situation. Most often, there is no one right answer. You will be stimulated to think something through and to raise points for discussion.

The most valuable aspect of an introductory biology course is not the tidbits of factual information you gather, but the new ways in which you see yourself and your environment. The section entitled "Experience This" will help you apply basic biological concepts to real situations.

Immediately preceding the chapter glossary is a series of review questions. You can use them to channel your attention as you study a chapter or as a review to check that you are well prepared for a test on the chapter material. All of the questions are directly answered either in the chapter narrative or in the illustrations.

BRIEF CONTENTS

PART FIVE

Chapter 18

PHYSIOLOGICAL PROCESSES

Materials Exchange

273

			in the Body 273
PART T	WO	Chapter 19	Nutrition: Food and Diet 296
CELLS: ANA	TOMY	Chapter 20	The Body's Control
AND ACTIO			Mechanisms 316
Chapter 2 Chapter 3	Simple Things of Life 18 Organic Chemistry:	Chapter 21	Human Reproduction, Sex, and Sexuality 336
Chapter 4	The Chemistry of Life 31 Cell Structure	PART S	IX
	and Function 47 Enzymes 70	THE ORIGIN AND CLASSIFICATION OF LIFE 357	
Chapter 5 Chapter 6 Chapter 7	Biochemical Pathways 80 DNA and RNA: The Molecular	Chapter 22	The Origin of Life and Evolution of Cells 357
Chapter	Basis of Heredity 102	Chapter 23	The Classification and Evolution
PART THREE		Chapter 24	of Organisms 369 Prokaryotae, Protista,
CELL DIVISION AND HEREDITY 121			and Mycetae 384
Chapter 8	Mitosis: The Cell-Copying Process 121	Chapter 25 Chapter 26	Plantae 401 Animalia 413
Chapter 9	Meiosis: Sex-Cell Formation 132		
Chapter 10	Mendelian Genetics 148	Glossary 435	
PART FOUR		Credits 449 Index 452	
EVOLUTION	AND ECOLOGY 164		
Chapter II Chapter I2	Diversity Within Species 164 Natural Selection and Evolution 177		
Chapter 13	Speciation and Evolutionary Change 191		

229

259

PART ONE INTRODUCTION

Chapter I

Chapter 14

Chapter 15

Chapter 16

Chapter 17

What Is Biology?

Ecosystem Organization and Energy Flow 208

Community Interactions

Population Ecology Behavioral Ecology

CONTENTS

Technology Supplements xii Preface xiv

PART ONE INTRODUCTION I

CHAPTER I

WHAT IS BIOLOGY?

Chapter Outline* 1 Purpose* For Your Information* 1 What's Ahead?* 1 The Significance of Biology in Your Life 2 Science and the Scientific Method 2 Observation 3 Questioning and Exploration 3 The Formation and Testing of Hypotheses 5 The Development of Theories and Laws 6 Science, Nonscience, and Pseudoscience 6 Fundamental Attitudes in Science 6 From Experimentation to Application 7 Science and Nonscience 7 Pseudoscience 8 Limitations of Science 8 The Science of Biology 9 Characteristics of Life 10 The Value of Biology II Problems in the Field of Biology 11 How Science Works 1.1 Edward Jenner and the Control of Smallpox 14 Future Directions in Biology 16 Summary* 16 Thinking Critically* Experience This* 17 Questions* 17

Chapter Glossary* 17

PART TWO

CELLS: ANATOMY AND ACTION 18

CHAPTER 2

SIMPLE THINGS OF LIFE 18

The Basics: Matter and Energy 19
Structure of the Atom 19
How Science Works 2.1 The Periodic Table
of the Elements 21
Chemical Reactions 22
Electron Distribution 22
The Modern Model of the Atom 23
lons 24
Chemical Bonds 26
lonic Bonds 26
Acids, Bases, and Salts 26
Covalent Bonds 27
Hydrogen Bonds 28

CHAPTER 3

ORGANIC CHEMISTRY: THE CHEMISTRY OF LIFE 31

Molecules Containing Carbon 32
Carbon: The Central Atom 32
The Carbon Skeleton and Functional Groups 34
Common Organic Molecules 34
Outlooks 3.1 Chemical Shorthand 35
Carbohydrates 35
Lipids 36
Outlooks 3.2 Fat and Your Diet 38
Proteins 39
Outlooks 3.3 Twenty Common Amino Acids 40
Nucleic Acids 44

^{*}These elements appear in every chapter.

CHAPTER 4

CELL STRUCTURE AND FUNCTION 47

How Science Works 4.1 The Microscope The Cell Theory 48 Cell Membranes 49 Getting Through Membranes 51 Diffusion 51 Dialysis and Osmosis 53 Controlled Methods of Transporting Molecules 54 Cell Size 55 Organelles Composed of Membranes 56 The Endoplasmic Reticulum 56 The Golgi Apparatus 57 The Nuclear Membrane 57 Energy Converters 58 Nonmembranous Organelles 59 Ribosomes 59 Microtubules and Microfilaments 60 Centrioles 60 Cilia and Flagella 60 Inclusions 61 Nuclear Components 61 Major Cell Types 63 The Prokaryotic Cell Structure 63 The Eukaryotic Cell Structure 64

CHAPTER 5

ENZYMES 70

Reactions, Catalysts, and Enzymes 71
How Enzymes Speed Chemical Reaction Rates 71
Outlooks 5.1 *Enzymes and Stonewashed "Genes"* 72
Environmental Effects on Enzyme Action 73
Cellular Controlling Processes and Enzymes 75

CHAPTER 6

BIOCHEMICAL PATHWAYS 80

Biochemical Pathways: Cellular Respiration and Photosynthesis 81
Generating Energy in a Useful Form: ATP 82
Understanding Energy Transformation Reactions 83
Oxidation-Reduction and Cellular Respiration 83
Outlooks 6.1 Oxidation-Reduction (Redox) Reactions in a Nutshell 84
How Science Works 6.1 Mole Theory—It's Not What You Think! 85
Aerobic Cellular Respiration 86
Basic Description 86
Intermediate Description 86
Detailed Description 88
Glycolysis 88

The Krebs Cycle 89 The Electron-Transport System 90 Alternatives: Anaerobic Cellular Respiration 90 Metabolism of Other Molecules 92 Fat Respiration 93 Protein Respiration 93 Oxidation-Reduction and Photosynthesis Basic Description 94 Intermediate Description 94 Detailed Description 96 The Light-Energy Conversion Stage of Photosynthesis 96 The Carbon Dioxide Conversion Stage of Photosynthesis 97 PGAL: The Product of Photosynthesis 98 Plant Metabolism 98

CHAPTER 7

DNA AND RNA: THE MOLECULAR BASIS OF HEREDITY 102

The Structure of DNA and RNA 103
The Molecular Structure of DNA 105
The Main Idea: The Central Dogma 106
DNA Replication 107
DNA Transcription 109
Prokaryotic Transcription 110
Eukaryotic Transcription 111
Translation, or Protein Synthesis 111
Alterations of DNA 113
How Science Works 7.1 The PCR and Genetic
Fingerprinting 116
Manipulating DNA to Our Advantage 116

CHAPTER 8

MITOSIS: THE CELL-COPYING PROCESS 121

The Importance of Cell Division 122
The Cell Cycle 122
The Stages of Mitosis 123
Prophase 123
Metaphase 124
Anaphase 124
Telophase 125

Plant and Animal Cell Differences 125
Differentiation 127
Abnormal Cell Division 128
How Science Works 8.1 Total Body Radiation
to Control Leukemia 129

CHAPTER 9

MEIOSIS: SEX-CELL FORMATION 132

Sexual Reproduction 133 The Mechanics of Meiosis: Meiosis I 134 Prophase I 136 Metaphase I 136 Anaphase I 136 Telophase I 136 The Mechanics of Meiosis: Meiosis II Prophase II 137 Metaphase II 138 Anaphase II 138 Telophase II 138 Sources of Variation 139 Crossing-Over 139 How Science Works 9.1 The Human Genome Project 140 Segregation 141 Independent Assortment 141 Fertilization 142 Nondisjunction 142 Chromosomes and Sex Determination 144 Outlooks 9.1 The Birds and the Bees . . . and the Alligators 145

CHAPTER 10

MENDELIAN GENETICS 148

A Comparison of Mitosis and Meiosis 145

Genetics, Meiosis, and Cells 149

CHAPTER II

DIVERSITY WITHIN SPECIES 164

Populations and Species 165
The Species Problem 165
The Gene Pool Concept 165
Outlooks II.1 Biology, Race, and Racism 168
Allele Frequency 168
Why Demes Exist 169
How Genetic Variety Comes About 170
Mutations 170
Sexual Reproduction 170
Migration 170
The Importance of Population Size 170
Genetic Variety in Domesticated Plants and Animals 171
Demes and Human Genetics 173
Ethics and Human Genetics 173

CHAPTER 12

NATURAL SELECTION AND EVOLUTION 177

The Role of Natural Selection in Evolution 178 What Influences Natural Selection? 178 Genetic Variety Resulting from Mutation 178 How Science Works 12.1 The Voyage of HMS Beagle, 1831-1836 179 Genetic Variety Resulting from Sexual Reproduction 180 The Role of Gene Expression 180 Acquired Characteristics Do Not Influence Natural Selection 180 The Importance of Excess Reproduction 181 How Natural Selection Works 182 Differential Survival 182 Differential Reproductive Rates 183 Differential Mate Selection 184 Gene-Frequency Studies and Hardy-Weinberg Equilibrium 184 Determining Genotype Frequencies 185 Why Hardy-Weinberg Conditions Rarely Exist 186 Using the Hardy-Weinberg Concept to Show Allele-Frequency Change 187 A Summary of the Causes of Evolutionary Change 188

CHAPTER 13

SPECIATION AND EVOLUTIONARY CHANGE 191

How Science Works 13.1 Is the Red Wolf
a Species? 192

Species: A Working Definition 192

How New Species Originate 193

Polyploidy: Instant Speciation 195

Maintaining Genetic Isolation 197

The Development of Evolutionary Thought 198

Evolution Above the Species Level 200

Rates of Evolution 202

The Tentative Nature of Evolutionary Thought 204

Human Evolution 205

CHAPTER 14

ECOSYSTEM ORGANIZATION AND ENERGY FLOW 208

Ecology and Environment 209
The Organization of Living Systems 210
The Great Pyramids: Energy, Number, Biomass 2
The Pyramid of Energy 211
The Pyramid of Numbers 212
The Pyramid of Biomass 212
Outlooks 14.1 Detritus Food Chains 213
Ecological Communities 215
Types of Communities 218
Altitude and Latitude 221
Succession 221
Human Use of Ecosystems 224

CHAPTER 15

COMMUNITY INTERACTIONS 229

Community, Habitat, and Niche 230 Kinds of Organism Interactions 230

Predation 230
Parasitism 232
Commensalism 234
Mutualism 234
Competition 235

The Cycling of Materials in Ecosystems 235
The Carbon Cycle 236
The Hydrologic Cycle 236

The Nitrogen Cycle 236

The Impact of Human Actions on Communities 239

Predator Control 239 Habitat Destruction 240 The DDT Story 240

Other Problems with Pesticides 241

How Science Works 15.1 Herring Gulls as Indicators of Contamination in the Great Lakes 243 CHAPTER 16

POPULATION ECOLOGY 246

Population Characteristics 247
Reproductive Capacity 249
The Population Growth Curve 249
Population-Size Limitations 250
Limiting Factors 251
 Extrinsic and Intrinsic Limiting Factors 253
 Density-Dependent and Density-Independent
 Limiting Factors 253
Human Population Growth 254
How Science Works 16.1 Thomas Malthus and His
 Essay on Population 255

CHAPTER 17

BEHAVIORAL ECOLOGY 259

How Science Works 17.1 Observation
and Ethology 260

Understanding Behavior 260
Instinct 261
Learned Behavior 262
Conditioning 263
Imprinting 263
Insight Learning 264
What About Human Behavior? 265
Reproductive Behavior 265
Allocating Resources 267
Navigation and Migration 269
Biological Clocks 270
Social Behavior 270

PART FIVE

PHYSIOLOGICAL PROCESSES 273

CHAPTER 18

MATERIALS EXCHANGE IN THE BODY 273

Basic Principles 274
Circulation 275
The Nature of Blood 275
Outlooks 18.1 Buffers 276
The Heart 278
Arteries and Veins 280
Capillaries 281
Gas Exchange 282
Respiratory Anatomy 282
Breathing System Regulation 282
Lung Function 284

Obtaining Nutrients 286

Mechanical and Chemical Processing 286

Nutrient Uptake 287

Chemical Alteration: The Role of the Liver 288

Waste Disposal 288

Kidney Structure 289

Kidney Function 289

CHAPTER 19

NUTRITION: FOOD AND DIET 296

Living Things as Chemical Factories: Matter and Energy
Manipulators 297
Kilocalories, Basal Metabolism, and Weight Control 297
The Chemical Composition of Your Diet 300
Carbohydrates 300
Outlooks 19.1 Fiber in Your Diet 301
Livids 302

Lipids 302
Proteins 302
Vitamins 303
Minerals 303
Water 303

Amounts and Sources of Nutrients 303
The Food Guide Pyramid with Five Food Groups 304
Outlooks 19.2 Which Kind of Vegetarian
Are You? 307

Eating Disorders 307
Obesity 307
Bulimia 308
Anorexia Nervosa 308

Deficiency Diseases 308 Nutrition Through the Life Cycle 310 Infancy 310

Childhood 3I0 Adolescence 3II Adulthood 3II Nutritional Needs A

Nutritional Needs Associated with Pregnancy and Lactation 312

Old Age 312

Nutrition for Fitness and Sports 313

CHAPTER 20

THE BODY'S CONTROL MECHANISMS 316

Integration of Input 317

The Structure of the Nervous System 317

The Nature of the Nerve Impulse 318

Activities at the Synapse 318

Endocrine System Function 321

Sensory Input 322

Chemical Detection 322

How Science Works 20.1 The Endorphins:

Natural Pain Killers 323

Light Detection 326

Sound Detection 327

Touch 328

Output Coordination 329

Muscles 329

Glands 333

Growth Responses 333

CHAPTER 21

HUMAN REPRODUCTION, SEX, AND SEXUALITY 336

Sexuality from Different Points of View 337 Chromosomal Determination of Sex 337 How Science Works 21.1 Speculation on the Evolution of Human Sexual Behavior 338 Planning the Sex of Your Child 339 Outlooks 21.1 Gender Anomalies 340 Male and Female Fetal Development 340 Sexual Maturation of Young Adults 341 The Maturation of Females 341 The Maturation of Males 342 Spermatogenesis 343 Oogenesis 343 Hormonal Control of Fertility 346 Fertilization and Pregnancy 348 Twins 350 Birth 350 Contraception 351 Outlooks 21.2 Sexually Transmitted Diseases Abortion 354 Sexual Function in the Elderly 354

PART SIX

THE ORIGIN AND CLASSIFICATION OF LIFE 357

CHAPTER 22

THE ORIGIN OF LIFE AND EVOLUTION OF CELLS 357

Spontaneous Generation versus Biogenesis 358
The Modern Theory of the Origin of Life 359
Early Earth 360
The First Organic Molecules 361
Coacervates and Microspheres 362

How Science Works 22.1 Was RNA the First
Genetic Material? 363

Heterotrophs to Autotrophs 363

An Oxidizing Atmosphere 364

The Origin of Eukaryotic Cells 364

CHAPTER 23

THE CLASSIFICATION AND EVOLUTION OF ORGANISMS 369

The Classification of Organisms 370
Kingdom Prokaryotae 374
Kingdom Protista 375
Kingdom Mycetae 376
Kingdom Plantae 376
Kingdom Animalia 377
Viruses 377
Outlooks 23.1 The AIDS Pandemic 379

CHAPTER 24

PROKARYOTAE, PROTISTA, AND MYCETAE 384

Microorganisms 385
Kingdom Prokaryotae 385
Kingdom Protista 388
Plantlike Protists 388
Outlooks 24.1 Don't Drink the Water! 391
Animal-like Protists 391
Funguslike Protists 393

Multicellularity in the Protista 394 Kingdom Mycetae 395 How Science Works 24.1 *Penicillin* 396 Lichens 398

CHAPTER 25

PLANTAE 401

Mosses 402
Alternation of Generations 402
Adjustments to Land 402
Vascular Tissue 402
Ferns 404
Gymnosperms 404
Angiosperms 406
Outlooks 25.1 Spices and Flavorings 409

CHAPTER 26

ANIMALIA 413

General Features of Animals 414
Animal Evolution 416
Primitive Marine Animals 417
A Parasitic Way of Life 418
Advanced Benthic Marine Animals 423
Pelagic Marine Animals: Fish 424
The Movement to Land 426
Outlooks 26.1 Parthenogenesis 429

Glossary 435 Credits 449 Index 452

WHAT IS BIOLOGY?

CHAPTER OUTLINE

The Significance of Biology in Your Life Science and the Scientific Method

Observation

Questioning and Exploration

The Formation and Testing of Hypotheses

The Development of Theories and Laws

Science, Nonscience, and Pseudoscience

Fundamental Attitudes in Science

From Experimentation to Application

Science and Nonscience

Pseudoscience

Limitations of Science

The Science of Biology

Characteristics of Life

The Value of Biology

Problems in the Field of Biology

How Science Works 1.1 Edward Jenner and the Control of Smallpox

Future Directions in Biology

PURPOSE

This chapter is a general introduction to the nature of science and the significance of biological science in your everyday life. It presents a scientist's view of the world and describes what living things are and how they differ from nonliving things. This chapter lays the groundwork for helping you understand and answer questions about

living things you encounter. You will be better able to understand and answer biological questions after you have an understanding of how science works.

FOR YOUR INFORMATION

As a result of recent, rapid advances in science, most newspapers have added a science page as a weekly feature. Some articles deal with controversial issues such as DNA testing and criminal cases, or religion and science. Other publications and media cover factual material. These features are intended to keep the general public aware of the most significant advances in all areas of science. Subjects such as recombinant DNA theory, biological amplification, and punctuated evolution are no longer discussed exclusively in scientific journals that only the most well-informed, practicing scientist can understand.

WHAT'S AHEAD?

What does science have to do with me?

How do I know if the information I have is the result of scientific investigation?

What are the steps in the scientific method?

If somebody says it came from science, how do I know that's true?

How have biologists made my life better?

What makes something alive?

What kinds of problems do biologists have to deal with now and in the future?

