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I. INTRODUCTION

Advances in molecular biology and bioinformatics are making it
possible to simultaneously analyze the entire complement of genes
expressed in a particular cell or tissue. These advances have created
unique opportunities in the field of medicine, where the results of gene
expression studies are expected to help identify cellular alterations
associated with disease etiology, progression, outcome, and response to
therapy. These rapidly emerging technologies are also expected to result
in the identification of novel therapeutic targets for a host of maladies,
including infectious diseases, behavioral disorders, developmental
defects, neurodegenerative diseases, aging, and cancer.

Technical advances have facilitated characterization of the three major
genetic units: the genome, the transcriptome, and the proteome (Fig. 1).
The genome describes the entire set of genes encoded by the DNA of an
organism. The transcriptome encompasses the entire complement of
messenger RNA (mRNA) transcripts transcribed from the genome of a
cell. The transcriptome varies from cell to cell and fluctuates in response
to numerous physiological signals, including developmental status, stress,
changes in the extracellular milieu, and disease. The proteome describes the
entire complement of proteins expressed by a cell at a point in time.
Proteomic investigations also aim to determine protein localization,
modifications, interactions, and, ultimately, protein function. Because the

1 Copyright 2003, Elsevier Science (USA).
ADVANCES IN All rights reserved.
PROTEIN CHEMISTRY, Vol. 65 0065-3233/03 $35.00
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Genetic Unit Method Informatic Endpoints
* Gene identification
- ¢ Gene structure
e —» | » Single nucleotide polymorphisms
* Gene clusters
Ll

Predict protein structure

* Gene expression patterns in

— — normal and diseased tissue

e Gene regulation

Protein identification

Protein quantitation
Post-translational modifications
Protein-protein interactions

Mass spectrometry
— [ ] —
Protein arrays/chips

FiG. 1. Information obtained from genomic and proteomic analysis. Advances in
genomic and proteomic analysis have facilitated characterization of the three major
genetic units: the genome, the transcriptome, and the proteome. The data gleaned
from each of these fields is in most cases unique to each genetic unit and, therefore,
provide complementary information about the organization and regulation of living
systems. The genome describes the entire set of genes that is encoded by the DNA of an
organism and this has been obtained through a massive DNA sequencing effort. The
transcriptome encompasses the entire complement of messenger RNA (mRNA)
transcripts transcribed from the genome of a cell. These data have been obtained
largely through the application of ¢cDNA microarrays. The proteome describes the
entire complement of proteins expressed by a cell at a point in time. Whereas two-
dimensional (sodium dodecyl sulfate and isoelectric focusing) polyacrylamide gel
electrophoresis has been the mainstay of proteomics analysis, the field is now
embracing new techniques such as multidimensional capillary liquid chromatography
coupled with tandem mass spectrometry (Link et al, 1999; Washburn et al, 2001), and
single-dimension ultrahigh-resolution capillary liquid chromatography in combination
with FTICR mass spectrometry (Jensen et al, 1999). The development of high-
throughput mass spectrometry methods and protein arrays will greatly accelerate the
pace of proteomics research.

function of a gene is dependent on the activity of its translated protein,
there has been significant impetus to develop methods that will enable
high-throughput analysis of cellular proteomes. To understand the
significance and impact of the rapid advances in analysis of the proteome,
it is necessary to consider the utility and limitations of data obtained from
analyses of the genome and transcriptome. Taken together, the study of
the genome, transcriptome, and proteome provides complementary
insights into a host of biological processes, and provides a greater
understanding of the regulation of these processes.
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II. DECIPHERING THE GENOME

Advances in nucleic acid sequencing and the software necessary to store
and annotate sequence data have been instrumental in characterizing the
genome of humans (International Human Genome Sequencing Consor-
tium, 2001; Venter et al, 2001) and other species (Fleischmann et al., 1995;
Blattner et al., 1997; Goffeau et al., 1996). The emphasis in the field of
genomics has been to both generate and evaluate whole genome sequence
data. The size and complexity of these genomic databases have
necessitated the development of new informatic tools to organize and
analyze data. The results obtained from this enormous effort will be
substantial. The first major benefit of this work will be the complete
identification and sequencing of the estimated 40,000 human genes that
comprise the human genome (Venter et al., 2001). Genes will be mapped
to specific chromosomes, which will contribute to an understanding of
normal development, the origin of phenotypic variability, and disease
etiology and disease susceptibility in humans. Genomic data will also
provide important information about intron and regulatory DNA
sequences that influence such critical processes as mRNA transcription
(Thieffry et al, 1998) and mRNA splicing. In addition, homology
alignment of new genome sequences with previously characterized genes
will facilitate structural and functional predictions of expressed proteins
(Gough et al., 2001).

Although there is clearly much to be gleaned from genomic sequence
data, interpreting the genome is complicated. It is well recognized that a
single gene may encode multiple different proteins. Moreover, because
coding regions are interspersed with noncoding regions of DNA and
because there can be differential mRNA splicing, the genomic sequence
cannot be used to reliably predict the entire spectrum of mRNA
transcripts (transcriptome) or corresponding proteins expressed by a cell
or tissue at any point in time.

III. GENE EXPRESSION PROFILES

Most biological studies have been limited in scope to the analysis of
individual mRNA transcripts or proteins. These studies employed such
techniques as Northern blot analysis, RNase protection assays, reverse
transcription—polymerase chain reaction, or Western blot analysis. The
data derived from these techniques are specific and generally quantitative,
but are limited to a small number of genes/proteins. Unfortunately, it is
often difficult to appreciate how an individual gene or protein relates to
an injury response, a signal transduction cascade, or a complex biological



4 MORRISON ET AL

state such as cancer. However, developments in DNA microarray
technology have made it possible to simultaneously evaluate mRNA
transcripts on a comprehensive level.

DNA microarrays are glass slides or nylon membranes to which ¢cDNA
sequences or oligonucleotides corresponding to select genes are affixed.
Total or poly(A) RNAs are isolated from the cells or tissues being
compared and reverse-transcribed to cDNAs. These are differentially
labeled with fluorescent dyes or other markers. The labeled ¢cDNAs are
concomitantly hybridized to the array. The glass slides or nylon
membranes are subsequently washed and scanned for intensity. A
comparison of the two label intensities allows the relative expression
levels of thousands of genes to be analyzed in a single experiment.

Alternatively, serial analysis of gene expression (SAGE) also provides a
comprehensive and quantitative measure of gene expression (Velculescu
et al., 1995). SAGE is based on the generation of unique nucleotide
sequence tags (10 base pairs) from a fixed position in each species of
mRNA. The tags are initially prepared from mRNA that is transcribed into
double-stranded cDNA and the frequency with which a tag appears in the
cDNA pool reflects its relative abundance. Analyses of mRNA transcript
levels, using either microarray or SAGE technology, are generally well
correlated (Ishii et al., 2000; Nacht et al., 1999).

The most common research application of cDNA microarrays is gene
expression profiling. Utilizing this approach, investigators have begun to
identify subsets of genes associated with particular biological states (e.g.,
cancer) or that vary in response to different environmental conditions.
With the completion of the Human Genome Project and through the
ongoing annotation efforts, it will be possible to assess the entire subset of
mRNAs (transcriptome) expressed in a tissue or cell of interest. It will also
be possible to determine how the transcriptome of a cell or tissue changes
with age, changing environmental conditions, or in response to injury and
disease. Gene expression profiling has already proved effective in
distinguishing between normal cells and tumor cells. Two subtypes of
non-Hodgkin’s lymphoma that could not be distinguished by traditional
histological methods were distinguished by profiling 17,856 genes in
patient samples (Alizadeh et al., 2000). Distinct subtypes of malignant
melanoma (Bittner et al, 2000) and breast cancer (Perou et al, 1999,
2000) have also been classified on the basis of gene expression profiling.
Monitoring patterns of gene expression in malignant tissues is having a
significant impact on the diagnosis and classification of many human
cancers (DeRisi et al., 1996; Golub et al., 1999).

In a study aimed at understanding the molecular mechanisms that
underlie the tumorigenesis and progression of clear cell renal cell
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carcinoma (ccRCC), gene expression profiles of 29 ccRCC tumors
obtained from patients with diverse clinical outcomes were analyzed with
21,632 cDNA-containing microarrays (Takahashi et al, 2001). Gene
expression profiles of each tumor sample were compared with cognate
patient-matched normal tissue to identify gene expression alterations that
occur in most ccRCCs. In addition, because all the experiments shared a
“‘common’’ normal tissue reference, results from each experiment could
be compared to identify gene expression patterns that correlated with
differences in observed clinical features of the tumors. Changes in gene
expression that were common to most of the ccRCCs studied and unique
to clinical subsets were identified. There was a significant distinction in
gene expression profiles between patients with a relatively nonaggressive
form of the disease (100% survival after 5 years with 88% of the patients
having no clinical evidence of metastasis) versus patients with a relatively
aggressive form of the disease (average survival time of 25.4 months with a
0% b-year survival rate). Approximately 40 genes, some of which have
previously been implicated in tumorigenesis and metastasis, were
identified. Moreover, the identified genes provide insight into the
molecular mechanisms of aggressive ccRCC and suggest intervention
strategies.

Many of the 40 genes that most effectively discriminated between
patients with good outcome and those with poor outcome gave insight
into the biology of the two groups of ccRCC (Takahashi et al, 2001).
Sprouty, the mammalian homolog of the Drosophila melanogaster angiogen-
esis inhibitor, was found to be exclusively upregulated in the good
outcome group, which suggests that failure to properly inhibit angiogen-
esis may contribute to aggressive forms of ccRCC. Transforming growth
factor (TGF-3), TGF-3 receptor II (TGF-BRII), and its downstream
effector, tissue inhibitor of metalloproteinase 3(TIMP3), were exclusively
downregulated in the poor outcome group. Loss of the TGF-fII signaling
pathway has previously been shown to contribute in aggressive cancer
development (Engel et al, 1999), and loss of TIMP3 expression by
promoter methylation was shown to increase tumorigenicity (Bachman
et al., 1999). The identification of this pathway as downregulated in
aggressive ccRCC suggests numerous targets for intervention to supple-
ment the still low response rate of current adjuvant therapies.

There are a multitude of biological questions in addition to cancer that
can be addressed by gene expression profiling. For example, this
technology is being used to determine the molecular basis of apoptosis
(Voehringer et al., 2000) and to unlock the secrets of the aging brain (Lee
et al., 2000). Despite the utility that gene expression profiling provides,
however, there are significant questions that cannot be answered by this
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powerful technology. Genomics and gene expression profiling convey only
limited information about the translated proteins that are ultimately
encoded by the genome. The varied and complex properties of proteins
cannot be reliably predicted by a simple linear readout of the genomic
blueprint or the transcriptome.

IV. A NICHE FOR PROTEOMICS

Fortunately, the rapidly evolving field of proteomics (study of
the proteome) is directed toward providing a comprehensive view of the
characteristics and activity of every cellular protein. The proteome is
clearly more complicated than the genome. The concept that one gene
corresponds to one protein no longer holds true. A single gene can
encode multiple different proteins. This can be attributed to (1)
alternative splicing of the mRNA transcript, (2) the use of alternative
translation start or stop sites, and (3) the occurrence of frame-shifting,
during which a different set of triplet codons in the mRNA is translated.
The net result of these activities is the generation of a proteome that
contains many proteins derived from shared or overlapping genomic
sequences (Fig. 2).

Another powerful impetus for moving beyond the transcriptome is the
demonstration by several researchers that protein levels do not faithfully
correlate with mRNA levels (e.g., Anderson and Seilhamer, 1997; Gygi
et al., 1999; O’Shaughnessy et al, 2000). An analysis of 106 genes in the
yeast Saccharomyces cerevisiae demonstrated that the levels of protein
expression attributed to mRNA species of equal abundance could vary by
as much as 30-fold. Conversely, the mRNA levels for proteins that were
expressed at comparable levels varied as much as 20-fold. Experience from
our own laboratory with cDNA microarray analysis yielded similar results.
We identified a novel transcript in malignant mouse astrocytes, pescadillo,
which was upregulated approximately 3-fold relative to nontransformed
mouse astrocytes (Kinoshita et al, 2001). Despite a 3-fold difference in
the abundance of pescadillo transcripts, pescadillo protein levels were
elevated more than 50-fold in the malignant mouse astrocytes
(Y. Kinoshita, G. Foltz, J. Schuster, P. S. Nelson and R. S. Morrison,
unpublished results). These results demonstrate that it is not always
possible to predict changes in protein levels on the basis of changes in
mRNA abundance.

One additional characteristic of proteins that is difficult to predict
from genomic sequence data is the nature of their posttranslational
modifications. In contrast to DNA and RNA, proteins can be modified
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by phosphorylation, glycosylation, acetylation, nitrosation, poly(ADP-
ribosyl)ation, ubiquitination, farnesylation, sulfation, linkage to glycopho-
sphatidylinositol anchors, and SUMOylation (SUMO, small ubiquitin
related modifier). In total, there are about 300 different posttranslational
modifications that have been reported (Aebersold and Goodlett, 2001).
These modifications can profoundly affect protein conformation, stability,
localization, binding interactions, and function. Proteins are often
modified at multiple sites, and it is not possible to predict from a
sequence with complete certainty which sites will be modified in
response to a specific set of conditions. The p53 tumor suppressor
protein is a striking example of a protein that is modified at multiple
sites in response to different stimuli. It is a nuclear phosphoprotein that
is modified, in response to DNA damage, by the addition of phosphate
to multiple seryl residues. The phosphorylation of certain seryl residues
is required for pb3-mediated transcription of several downstream
targets associated with cell cycle arrest, including p21WAF1/Cipl (p21)
and mdm-2 (Jabbur et al, 2000; Oda et al, 2000). In contrast to these
specific seryl residues, phosphorylation at other seryl residues regulates
the transcriptional activation of apoptosis (Oda et al., 2000). Moreover,
the phosphorylation pattern of the p53 molecule can vary in an injury-
dependent manner. Exposing cultured fibroblasts to nitric oxide
induces a different pattern of p53 phosphorylation than exposure to vy
irradiation, UV light, and doxorubicin (Adriamycin) (Nakaya et al., 2000).
pb3 also requires multiple forms of posttranslational modification to
manifest its activity. In addition to phosphorylation, conjugation of the
ubiquitin-like molecule, SUMO-1, enhances the transcriptional activity of
pb3 (Gostissa et al., 1999; Muller et al, 2000; Rodriguez et al., 1999).
Although it is possible to analyze a genetic sequence for the presence of
putative consensus sites for various posttranslational modifications, the
mere presence of such sites does not indicate whether they are utilized,
under what circumstances they are utilized, or if they are utilized
simultaneously.

V. THE PROTEOME: GREATER THAN THE SUM OF ITS PARTS

The disparity between mRNA levels and protein expression suggests that
characterizing the proteome, rather than the transcriptome, under
different conditions may provide a more accurate representation of the
biological state of a cell. At the present time, evaluating the proteome is
more difficult and labor intensive than characterizing the transcriptome.
Two-dimensional (sodium dodecyl sulfate and isoelectric focusing)



