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Preface

Solid-state sensors that measure universal physical parameters such as
pressure, position, height, acceleration, temperature and others have been
commercially successful. Less success has been attained by solid-state
sensors designed to measure important chemical species such as protons
(pH), O,, CO,, H,S, CO, propane and glucose, to mention a few. There is
no doubt, however, that we can look forward to rapidly increasing use of
solid-state sensors as the results of current research lead to their improve-
ment and because of the huge cost difference compared with the more
complex analytical equipment, such as gas chromatographs. In this book we
explore the theoretical background needed to understand solid-state chemi-
cal sensors, explore the major developments in the area of chemical sensors
over the last two decades, and explore the reasons why these low-cost
solid-state sensors have not become more of a commonplace item in our
daily lives. We also suggest possible directions for future research and
development.

The book is meant to provide guidance through the multidisciplinary
world of chemical sensors for scientists of various training, chemists,
biologists, engineers and physicists. Researchers of these various back-
grounds, working together, are needed to provide the improved sensors of
the future. We hope the essentials will also be understandable to students
with some training in physics and chemistry and a general knowledge of
electronics.

In the first part of the book we present a review of the necessary
theoretical background in solid-state physics, chemistry and electronics. We
examine the semiconductor and solid electrolyte bulk models as well as the
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Xii Preface
solid/gas and solid/liquid interface models, because the species to be
detected interacts with the surface of the solid. We also discuss the theory
of membranes and catalysts, both of which can be very important in almost
any type of chemical sensor. We have not attempted to provide a similar
fundamental background in biology to support the chapter on biosensors.
Other sources must be used if one needs to familiarize oneself with the
basics in that field.

In the second part of the book we discuss more complete sensor devices
(the essential components are combined) and discuss the latest development
in this area. Due to the wide range of types of chemical sensors, we have
limited ourselves to those sensors in which a physicochemical interaction
between a solid and the species to be detected causes an electrical effect in
the solid that can be quantified.

We emphasize three classes of solid sensors: semiconductor sensors,
where the species to be detected is adsorbed or absorbed and changes the
electronic conductivity of the semiconductor; solid electrolyte devices for
use in gas or liquid, where the species to be detected affects the Nernst
potential or changes the ionic current through the solid; and ChemFETs,
where the species to be detected affects the potential at the gate of a
field-effect transistor. New areas such as amperometric microelectrode
arrays are discussed as well as the economic aspects of chemical sensors.

We have included numerous references to enable the reader to focus on a
particular detection problem. We felt this would be preferable to trying to
describe all combinations of sensors and detectable species that could be of
interest. This has allowed us to present the background information and the
common features in more detail.
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1

Introduction

The chemically sensitive solid-state devices discussed in this book are
based on the electrical response of the solid to its chemical environment.
That is, we are interested in solids whose electrical properties are affected
by the presence of a gas-phase or liquid-phase species; this change in
electrical properties is observed and then used to detect the species.

In addition to sensors based on changes in electrical parameters, many
other types of solid-state chemical sensors are based on other principles,
such as acoustics (e.g., bulk and surface acoustic wave devices (BAW and
SAW)), optics (e.g., optical waveguides), and thermochemistry (e.g., mi-
crocalorie sensor and microenthalpy sensor (or, in more classical form,
catalytic bead sensors)). Of course, more classical techniques, such as gas
chromatography, ion mobility spectroscopy and mass spectroscopy, con-
tinue to be used for sensing purposes.

The major advantages of solid-state sensors are their simplicity in
function, small size and projected low cost. The simplicity in function is in
sharp contrast to some of the more classical analysis techniques mentioned
in the preceding paragraph, which require complex equipment and skilled
operators to run an analysis. The projected cost is low because the size of
the solid sample used is small (typically measured in centimeters to mi-
crometers). For some forms of solid-state sensors now under development,
the cost is further minimized by the use of batch, planar fabrication
technologies in manufacturing the device.

The major disadvantages of most solid-state chemical sensors are lack of
stability, lack of reproducibility, and lack of selectivity as well as insuffi-
cient sensitivity for certain purposes. These problems, and the research
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2 Introduction 1

underway to alleviate them, will be discussed throughout the text. However,
in many applications the disadvantages are not prohibitive; hence solid-state
sensors are commercially available and in use. Also, through the use of
filters, membranes, catalysts and other variations, sensors with different
selectivities can be produced. Then arrays of sensors feeding a microcircuit
can in principle overcome many of the above disadvantages while still
retaining a reasonable cost.!

The term “solid-state sensors” will be used quite broadly here to include
sensors incorporating not only classical semiconductors, solid electrolytes,
insulators, metals and catalytic materials but also different types of organic
membranes. The term even extends to sensors incorporating liquid mem-
branes that, by judicious use of polymeric supports and gelling agents,
appear solid (e.g., polymer-supported ion-selective membranes and sensors
incorporating hydrogels).

The most frequently recurring topics discussed in the book are intro-
duced in this chapter.

1.1 Silicon-Based Chemical Sensors

Silicon-based sensors, which are just one type of semiconductor-based
solid-state sensor, are quite a recent development. One important class of
these sensors arises as variations on field-effect transistors (FETs). In a FET
one has a thin channel of conductance at the surface of the silicon, which is
controlled by the voltage applied to a metal film (a gate) separated from
the channel of conductance by a thin insulator layer (e.g., silicon dioxide).
It was found that if the metal film was removed from the FET and either
adsorbed gases or ions from the ambient atmosphere or else liquid ap-
peared at the surface of the gate dielectric, the effect was similar to applying
a voltage at the gate.?

Thus, great interest was generated regarding the possibility of using
well-understood integrated circuit (IC) technology to produce amplifying
devices (such as the FET) that would respond to molecules and ions in
solution or gases. Selectivity can be induced in these sensors by the
appropriate incorporation of, for example, certain pH-sensitive insulators
and ion-selective membranes in ion-sensitive field-effect transistors
(ISFETs), enzymes in enzyme-sensitive field-effect transistors (EnFETs),
antibodies or antigens in immuno-FETs (ImmFETs), whole tissue layers in
BioFETs and certain bilayer lipid membranes (BLM) in BLMFETs. Often



1.1 Silicon-Based Chemical Sensors 3

the broader term “ChemFET” is used to describe a chemically sensitive
FET. ChemFETs are discussed in Chapters 8 and 9. In particular, it has
been projected that this new class of chemically sensitive electronic devices
will at least have some of the following attractive sensor attributes:

» Small, rugged, low-cost, batch-fabricated, solid-state structures, possi-
bly disposable.

e Arrays of sensor elements for multispecies detection incorporating
redundancy (in case one element breaks, or for averaging) and electron-
ics on the silicon chip to provide low-impedance output, filtering,
multiplexing, and so on, or, in other words, an integrated monolithic
(e.g., all-silicon) sensor.

* Arrays of sensor elements also incorporating on-chip memory: both a
read-only memory (ROM) to unravel complex responses, such as
nonlinearities, or to offset predictable drift patterns, and a random-
access memory (RAM) to let the user interact with the sensor to set it
up for a specific application. In other words, one could visualize a
“smart” sensor.

The first desirable feature can be achieved with many solid-state sensors.
The second and third features are, in monolithic form, only possible when
semiconductor materials such as Si and GaAs are used. To some degree, the
same features are also possible for many types of hybrid sensors—that is,
sensors in which electronic functions are on a separate semiconductor chip
close to the chemical sensing function; the sensor and the chip are affixed to
a common substrate and connected with short conductor lines (signal lines).

The development of FET-based chemical sensors, which seemed very
promising in the early 1970s, is plagued by a tremendous number of
technological and fundamental problems. These problems are reflected in
the rather large irreproducibility of performance and important drifts and
degradation with time, which frequently even precludes the use of dispos-
able devices.’ The high investment costs have also postponed development.

The technological problems are mostly associated with attempts to
integrate closely chemical-sensitive layers and electronics on the same chip:
for example, electrolyte leakages leading to shunting of the amplifier, light
sensitivity of the FET gate, incompatibility between Si technology and the
many types of gate materials needed to induce chemical sensitivity and
selectivity, and encapsulation in general. For in vivo use of sensors biocom-
patibility has proven to be the most difficult hurdle to overcome. Many
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alternative FET-based approaches have been proposed since the initial
studies, a few of which could possibly circumvent some of the former
technological problems. These alternative Si-based devices, which include
the ion-controlled diode (ICD), the extended-gate field-effect transistor
(EGFET), the electrostatically protected field-effect transistor and others,
will be discussed in detail in Chapter 9. Biocompatibility of microsensors is
often more of a black art than an exact science and no satisfying solutions
are available today. We briefly touch upon the subject in Chapter 7.

A fundamental problem with most FET-based devices used in liquids,
which causes drift and irreproducibility, is associated with the inability to
establish a well-defined reference potential on either side of the chemically
sensitive membrane. In ChemFETs, where the gate potential is to be
affected by the concentration on the other side of the membrane, the
membrane is placed directly on top of an insulating gate. With this
configuration, the device lacks the internal reference electrode and elec-
trolyte needed for the establishment of a stable internal reference potential.
Literature describing the problem of no internal reference electrode is
limited. However, in coated wire electrodes (CWEs), where membranes are
put directly on a metal wire, also without the provision of an internal
reference electrode or internal electrolyte, stability problems similar to
those encountered with ChemFETs were observed. In the CWE field a
much more thorough study was made of this phenomenon. Because this
work is of considerable importance to future developments in the field of
FET-based Si sensors, we reviewed it in detail in Section 6.3.

An external reference electrode (to be used effectively to provide a
constant ground potential) is also hard to make in the desired form (planar
and micro). A true external reference electrode (see Section 6.1) includes an
electrode of the second kind, such as the Ag/AgCl system in contact with a
reservoir of the potential-determining ions (e.g., 0.1 M of Cl~ for a Ag/AgCl
electrode), and a device (e.g., a glass frit) to restrict mixing of the analyte
(the solution to be analyzed) with the internal electrolyte. These features are
very hard to fabricate on a microscale. Consequently, so-called pseudo
reference electrodes are often used instead. In these electrodes the Ag/AgCl
is directly exposed to the analyte rather than to a small reservoir of
reference electrolyte. With this compromise the potential of the external
reference electrode in a FET device is then only fixed when the concentra-
tion of potential-determining ion for the reference system (e.g., Cl~ for a
Ag/AgCl electrode) is constant in the analyte.

Another fundamental problem with certain FET devices (e.g., the
ImmFET (see Chapter 9)) has been the failure to find a perfectly polariz-



