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This undergraduate textbook merges traditional solid state physics with con-
temporary condensed matter physics, providing an up-to-date introduction to
the major concepts that form the foundations of condensed materials. The main
foundational principles are emphasized, providing students with the know-
ledge beginners in the field should understand. The book is structured in four
parts, and allows students to appreciate how the concepts in this broad area
build upon each other to produce a cohesive whole as they work through the
chapters. Illustrations work closely with the text to convey concepts and ideas
visually, enhancing student understanding of difficult material, and end-of-
chapter exercises, varying in difficulty, allow students to put into practice
the theory they have covered in each chapter, and reinforce new concepts.
Additional resources including solutions to exercises, lesson plans and pre-
lecture reading quiz questions are available online at www.cambridge.org/
sidebottom.

David L. Sidebottom is Associate Professor in the Physics Department at
Creighton University. He is an experienced teacher and has taught a wide
variety of courses at both undergraduate and graduate level in subject areas
including introductory physics, thermodynamics, electrodynamics, laser phys-
ics and solid state physics. He has taught a course on solid state physics since
2003, adapting and revising its content to reflect the broader themes of
condensed matter physics beyond those of the conventional solid state. This
textbook stems from that course.
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Purpose and motivation

This textbook was designed to accompany a one-semester, undergraduate
course that itself is a hybridization of conventional solid state physics and
“softer” condensed matter physics.

Why the hybridization? Conventional (crystalline) solid state physics has been
pretty much understood since the 1960s at a time when non-crystalline physics was
still a fledgling endeavour. Some 50 years later, many of the foundational themes in
condensed matter (scaling, random walks, percolation) have now matured and
I believe the time is ripe for both subjects to be taught as one. Moreover, for those
of us teaching at smaller liberal arts institutions like my own, the merging of these
two subjects into one, better accommodates a tight curriculum that is already
heavily laden with required coursework outside the physics discipline.

Why the textbook? For some years now I have taught a one-semester course,
originally listed as “solid state physics”, which evolved through each biannual
reincarnation into a course that now incorporates many significant condensed
matter themes, as well as the conventional solid state content. In past offerings of
the course, a conventional solid state textbook was adopted (Kittel’s Introduc-
tion to Solid State Physics) and students were provided with handouts for the
remaining material. This worked poorly. Invariably, the notation and style of the
handouts clashed with that of the textbook and the disjointed presentation of the
subject matter was not only annoying to students, but a source of unnecessary
confusion. Students were left with the impression that solid state and condensed
matter were two largely unrelated topics being crammed into a single course.
Frustrated, I opted to spend a portion of a recent sabbatical assembling all of the
material into a single document that would better convey the continuity of these
two fields by threading both together into a seamless narrative.

So if you are looking for a reference-style textbook that provides a comprehen-
sive coverage of the entire field of condensed matter, read no further because this
is not it. This textbook was not written for practitioners, but rather for novices. It
was designed to help students comprehend, not so much the details, but the major
concepts that form the foundations of condensed matter and crystalline physics.
At the very least I want students to leave the course able to comprehend the
meaning behind terminology used by solid state physicists (e.g., “symmetry
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operations”, “Brillouin zones”, “Fermi sufaces”) and condensed matter physicists
» " RIS

(e.g, “mean field theory”, “percolation”, “scaling laws”, “structure factors”) so
that they might rapidly acclimate to current research in either field.

Layout and use
L R ey,

I confess that my inspiration for the textbook style was Kittel’s Introduction to
Solid State Physics, which has been a valuable guide for maintaining the
development at a level appropriate for an undergraduate audience. Although
criticized by some, his text is now in its eighth edition and has remained a
popular choice for many undergraduate courses on solid state physics (includ-
ing my own). Those familiar with Kittel, will find that this hybrid textbook
incorporates most of the same subject matter (albeit abbreviated in places and
arranged in a different order due to the way it is now interwoven with other
non-crystalline topics) as is found in the first twelve chapters of Kittel.

Students will need a limited exposure to both quantum mechanics and statistical
mechanics. The level of quantum mechanics that is provided in an introductory
sophomore-level course on modern physics (1D wave mechanics, particle in a
box, harmonic oscillators) should be sufficient. Beyond that, statistical mechanics
and thermodynamics (specifically, Boltzmann statistics and free energies) are
introduced periodically throughout the text and this is more likely to be the
deficiency for some students. In an effort to help alleviate this and other potential
deficiencies, an appendix is included which provides an introduction to such things
as statistical mechanics, Fourier transforms and the use of Dirac delta functions.

The text is divided into four major parts: Structure, Scattering, Dynamics, and
Transitions. Within each part are anywhere from four to six chapters designed
more to delineate topics than to represent equal amounts of material. Although a
common rule of thumb would be to allot three, 50-minute lecture periods per
chapter, several chapters (e.g., 2, 3, 7, 10, 14, 15) could be adequately discussed
in just two periods and Chapter 5 could likely be addressed in a single period.
The lesson plan that I have adopted looks something like this:

Lecture #1 (S0 min)  Lecture #2 (S0 min)  Lecture #3 (50 min)
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Lecture #1 (50 min)  Lecture #2 (50 min) Lect‘urlg#ii (50 min)

W:ek ~ Chapter 'fbhapter ‘ Chnpter .

Can all these topics be covered in a semester? Maybe. In my experience,
I have so far only managed to cover about 85%. Topics to skip are really a
matter of preference. I had no reservations about skipping the subject of bonds
and cohesion (Chapter 3) and only modest discomfort at skipping the subject
of bulk dynamics (Chapter 14). Others that are less interested in amorphous
solids could skip glass structure (Chapter 2), but I would advise not to skip the
material on scattering from self-similar objects (Chapter 8), as this contributes
an important conceptual foundation for much of the materials in the last four
chapters (Chapters 15-18) of the text.

Some might be tempted to skip the development of scattering theory
presented in Chapter 5, so let me petition against this. In my experience,
students struggle with the concept of reciprocal space primarily because of
how most conventional solid state textbooks mysteriously introduce it directly
after discussing Bragg’s law. Students rarely grasp the significance of this
abstract space and probably question why it is introduced at all, given how
Bragg’s law seems sufficient. By first introducing the fundamentals of scatter-
ing in Chapter 5, the reciprocal space appears more naturally as the discrete set
of scattering wave vectors for which non-zero scattering occurs. Bragg’s law is
only presented as a consequence.

Anywhere from five to ten exercises can be found at the end of each chapter.
These come in a variety of difficulty levels and are designed mostly to help
students digest the material and develop skills. Many of the easier problems are
derived from the text itself and ask students to complete the missing steps in a
derivation. Although some may see this as aimless “busy work”, for many
undergraduate students (in my experience) these exercises represent a challen-
ging skill yet to be mastered.

For students

Good luck and I hope this textbook helps you. Please let me know what you do
and don’t like about the textbook so that I can improve it in the future.
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