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Preface

The book before you is a new upper-level undergraduate text that shows how
mathematics can illuminate fascinating problems drawn from society and biology.
The book assembles an unusual array of applications, many from professional
journals, that have either not appeared before or that cannot be found easily in book
form. Moreover the context of most chapters are current issues of real concern, and
we distance ourselves from contrived “toy models™ that are merely “academic™
exercises. In this book mathematics follows from the problems and not the other
way around, as is often the case in other works.

Mathematical modeling is viewed as an organizing principle that enables one
to handle a vast and often confusing array of facts in a parsimonious manner. A
model is useful when it reveals something of the underlying dynamics, providing
insight into some complex process. Although models rarely replicate reality, they
can serve as metaphors for what is going on in a simple and transparent manner,
a bit of a caricature perhaps but informative nonetheless. The models chosen for
this book all share these qualities.

Features

There are applications of interest in political science (Chapters 2 and 9); sociol-
ogy (Chapter 1); economics (Chapters 7 and 9); ecology (Chapters 1, 7, and 8);
public policy, in the municipalities, and management science (Chapters 3 and 4);
molecular biology (Chapter 5); epidemiology (Chapter 6); and biochemistry and
cell biology (Chapters 6 and 7), among other areas. No prior knowledge of any
of these fields is assumed except what an interested layperson might pick up by
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reading the daily newspaper; any background that is needed to understand the
problem is provided in the text.

A feature of the book is that several topics reappear in different guises throughout
the text, thereby giving the student alternative perspectives on different facets of the
same problem. A few unifying themes are woven throughout the book using fresh
insights, and these result in a more cohesive presentation. This is discussed in a
final section that gives an overview of the entire book and of the modeling process.

Prerequisites

As for prerequisites, I assume that a student has had the conventional training
expected of a junior-level student including basic results from the multivariate
calculus and matrix theory and some elementary probability theory and linear
differential equations. More exotic material is explained in the text, as needed, and
in the few places where relatively sophisticated tools are required I explain the
results carefully and provide appropriate references to where details can be found.

Most chapters include a section that describes the relevant mathematical tech-
niques needed later in that chapter, and there is a short appendix on conditional
probability. In particular, there is a brief but fairly complete account of systems
of differential equations in Chapter 6. An instructor may wish to expand on our
treatment of these topics, depending on the preparation of the students.

In my opinion, the most interesting differential equation models ultimately re-
quire that solutions be obtained numerically, and it would be useful for students to
have access to a simple language for computing orbits for systems of two and three
nonlinear differential equations, such as those that occur in Chapters 6 through 8.
In this book, all the computer generated solutions and accompanying graphics
utilized MATLAB, Version 5.
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Crabs and Criminals

1.1. Background

A hand reaches into the still waters of the shallow lagoon and gently places a shell
on the sandy bottom. We watch. A little later a tiny hermit crab scurries out of a
nearby shell and takes possession of the larger one just put in. This sets off a chain
reaction in which another crab moves out of its old quarters and scuttles over to
the now empty shell of the previous owner. Other crabs do the same until at last
some barely habitable shell is abandoned by its occupant for a better shelter, and
it remains unused.

One day the president of a corporation decides to retire. After much fanfare
and maneuvering within the firm, one of the vice presidents is promoted to the
top job. This leaves a vacancy which, after a lapse of a few weeks, is filled by
another executive whose position is now occupied by someone else in the corporate
hierarchy. Some months pass and the title of the last position to be vacated is merged
with some currently held job title and the chain terminates.

A lovely country home is offered by a real estate agency when the owner dies
and his widow decides to move into an apartment. An upwardly mobile young
professional buys it and moves his family out of the split-level they currently
own after selling it to another couple of moderate income. That couple sold their
modest house in a less than desirable neighborhood to an entrepreneurial fellow
who decides to make some needed repairs and rent it.

What do these examples have in common? In each case a single vacancy leaves
in its wake a chain of opportunities that affect several individuals. One vacancy
begets another while individuals move up the social ladder. Implicit here is the
assumption that individuals want or need a resource unit (shells, houses, or jobs)
that is somehow better (newer, bigger, more status) or, at least, no worse than the
one they already possess. There are a limited number of such resources and many
applicants. As units trickle down from prestigious to commonplace, individuals
move in the opposite direction to fill the opening created in the social hierarchy.
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A chain begins when an individual dies or retires or when a housing unit is
newly built or a job created. The assumption is that each resource unit is reusable
when it becomes available and that the trail of vacancies comes to an end when a
unit is merged, destroyed, or abandoned, or because some new individual enters
the system from the outside. For example, a rickety shell is abandoned by its last
resident, and no other crab in the lagoon claims it, or else a less fortunate hermit
crab, one who does not currently have a shell to protect its fragile body, eagerly
snatches the last shell.

A mathematical model of movement in a vacancy chain is formulated in the next
section and is based on two notions common to all the examples given. The first no-
tion is that the resource units belong to a finite number, usually small, of categories
that we refer to as states and, second, that transitions take place among states when-
ever a vacancy is created. The crabs acquire protective shells formerly occupied by
snails that have died and these snail shells come in various size categories. These
are the states. Similarly, houses belong to varying price/prestige categories, while
jobs in a corporate structure can be labeled by different salary/prestige classes.

Let’s now consider an apparently different situation. A crime is committed and,
in police jargon, the perpetrator is apprehended and brought to justice and sentenced
to “serve time” in jail. Some crimes go unsolved, however, and of the criminals that
get arrested only a few go to prison; most go free on probation or because charges
are dropped. Moreover even if a felon is incarcerated, or is released after arrest, or
even if he was never caught to begin with, it is quite possible that the same person
will become a recidivist, namely, a repeat offender. What this has in common with
the mobility examples given earlier is that here, too, there are transitions between
states, where in this case “state” means the status of an offender as someone who
has just committed a crime, or has just been arrested, or has just been jailed or,
finally, has “gone straight” never to repeat a crime again. This, too, is a kind of
social mobility and we will see that it fits the same mathematical framework that
applies to the other examples.

One of the problems associated with models of social mobility is the diffi-
cult chore of obtaining data regarding the frequency of moves between states. If
price, for example, measures the state of housing, then what dollar bracket consti-
tutes a single state? Obviously the narrower we make a price category, the more
homogeneous is the housing stock that lies within a given grouping. On the other
hand, this homogeneity requires a large number of states, which exacerbates the
data-gathering effort necessary to estimate the statistics of moves between states.

We chose the crab story to tell because it is a recent and well-documented study
that serves as a parable for larger scale problems in sociology connected with
housing and labor. It is not beset by some of the technical issues that crop up
in these other areas, such as questions of race that complicate moves within the
housing and labor markets. By drastically simplifying the criminal justice system
we are also able to address some significant questions about the chain of moves
of career criminals that curiously parallel those of crabs on the sandy sea bottom.
These examples are discussed in Sections 1.3 and 1.4.
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1.2. Absorbing Markov Chains

We began this chapter with examples of states that describe distinct categories such
as the status of a felon in the criminal justice system or the sizes of snail shells in
a lagoon. Our task now is to formalize this idea mathematically.

The behavior of individual crabs or criminals is largely unpredictable and so we
consider their aggregate behavior by observing many incidents of shell swapping
or by examining many crime files in public archives.

Suppose there are N states and that p; ; denotes the observed fraction of all
moves from a given state i to all other states j. If a large number of separate moves
are followed, the fraction p; ; represents the probability of a transition from i to
J - In fact this is nothing more than the usual empirical definition of probability as
a frequency of occurrence of some event. The N by N array P with elements p; ;
is called a transition matrix.

To give an example, suppose that a particle can move among the integers
1240555 N by bouncing one step at a time either right or left. If the particle
is at integer i it goes to i 4+ 1 with probability p and to i — 1 with probability ¢,
p +q = 1, except when i is either 1 or N. At these boundary points the particle
stays put. It follows that the transition probabilities are given by

piiti=p and  pi1=q for2<i<N-1

pii=pyny=1 and pi; =0 for all other j

The set of transitions from states i to states j is called a random walk with absorbing
barriers and is illustrated schematically in Figure 1.1 for the case N = 5.

A Markov chain (after the Russian mathematician A. Markov) is defined to be
a random process in which there is a sequence of moves between N states such
that the probability of going to state j in the next step depends only on the current
state / and not on the previous history of the process. Moreover, this probability
does not depend on when the process is observed. The random walk example is a
Markov chain since the decision to go either right or left from state i is independent
of how the particle got to i in the first place, and the probabilities p and ¢ remain
the same regardless of when a move takes place.

To put this in more mathematical terms, if X, is arandom variable that describes
the state of the system at the nth step then prob(X,+; = j | X,, = i), which means
“the conditional probability that X,.; = j given that X,, = i” is uniquely given

Figure 1.1. Schematic representation of a random walk.



4 1 Crabs and Criminals

by pi,j. In effect, amove from i to j is statistically independent from all the moves
that led to i and is also independent of the step we happen to stumble on in our
observations. Clearly p; ; > 0 and, since a move from state i to some other state
always takes place (if one includes the possibility of remaining in i), then the sum
of the elements in the ith row of the matrix P add to one:

N
Y pij=1 1<i<N
j=1
The extent to which these conditions for a Markov chain are actually met by
crabs or criminals is discussed later. Our task now is to present the mathematics
necessary to enable us to handle models of social mobility.
Let P™ be the matrix of probabilities p?f'l.) of going from state i to state j
in exactly n steps. This is conceptually different from the n-fold matrix product
P" = PP...P. Nevertheless they are equal:

Lemma 1.1 P" =P®W

Proof: Letn =2. A move fromi to j in exactly two steps must pass through
some intermediate state k. Because the passages from i to k and then from £ to j
are independent events (from the way a Markov chain was defined), the probability
of going from i to j through k is the product p; x px ; (Figure 1.2). There are N
disjoint events, one for each intermediate state k, and so

N
2)
P =" pikb.
k=1

which we recognize as the i, jth element of the matrix product P2. o

1

°

2

. .
i J
° . ®

L]

L]

k

°

L]

L

L]

N

°

Figure 1.2. Two-step transition between states i and j through an intermediate state k.
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We now proceed to the general case by induction. Assume the Lemma is true
for n — 1. Then an identical argument shows that

N
(n) (n—1)
pPi; = Z Pik Py,
k=1

which is the i, jth element of P".

A state i is called absorbing if itis impossible toleave it. This means that p; ; = 1.
In the random walk example, for instance, the states 1 and N are absorbing.

Two nonabsorbing states are said to communicate if the probability of reaching
one from the other in a finite number of steps is positive. Finally, an absorbing
Markov chain is one in which the first s states are absorbing, the remaining N — s
nonabsorbing states all communicate, and the probability of reaching every state
i < sin a finite number of steps from each i’ > s is positive.

It is convenient to write the transition matrix of an absorbing chain in the

following block form:
I O
P= 1.1
(% o) w

where I is an s by s identity matrix corresponding to fixed positions of the s
absorbing states, Q is an N — s by N — s matrix that corresponds to moves
between the nonabsorbing states, and R consists of transitions from transient to
absorbing states. In the random walk with absorbing barriers with N = 5 states
(Figure 1.1), for example, the transition matrix may be written as

1 52 3 4

1 1 00 0O
5101 0 0 O
P=2|q 0 0 p O
310060 p

4 \0 p 0 q O

Let f; be the probability of returning to state i in a finite number of moves given
that the process begins there. This is sometimes called the first return probability.
We say that state i is recurrent or transient if f; = 1 or f; < 1, respectively. The ab-
sorbing states in an absorbing chain are clearly recurrent and all others are transient.

The number of returns to state ¢, including the initial sojourn in 7, is denoted by
N;. This is a random variable taking on values 1, 2, . . .. The defining properties of
a Markov chain assure that each return visit to state i is independent of previous
visits and so the probability of exactly m returns is

prob(N; =m) = " '(1 = f;) (1.2)
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The right side of (1.2) is known as a geometric distribution and it describes the
probability that a first success occurs at the mth trial of a sequence of independent
Bernoulli trials. In our case “success” means not returning to state i in a finite
number of steps. The salient properties of the geometric distribution are discussed
in most introductory probability texts and are reviewed in Exercise 1.5.1.

The probability of only a finite number of returns to state i is obtained by
summing over the disjoint events N; = m:

s 29 0 if i is recurrent
b(N; = bNi=m)= ) f"'A-fy=3 .
prob(N; < o0) ’;pro (N;=m) m;l A= f) { 1 if i is transient

With probability one, therefore, there are only a finite number of returns to a
transient state.

In the study of Markov chains the leading question is what happens in the long
run as the number of transitions increases. The next result answers this for an

absorbing chain.

Lemma 1.2 The probability of eventual absorption in an absorbing Markov
chain is one.

Proof: Each transient state can be visited only a finite number of times, as we
have just seen. Therefore, after a sufficiently large number of steps, the process is
trapped in an absorbing state.

The submatrix Q in (1.1) is destined to play an important role in what follows.
We begin by recording an important property of Q: o

Theorem 1.1 The matrix 1 — Q has an inverse.

Proof: From Lemma 1.1 the elements of the matrix product Q" represent the
probability of a transition in exactly n steps from some transient state i > s to
some other transient j > s. From Lemma 1.2, Q" must go to zero as n tends to

infinity. o

Let u be an eigenvector of Q with corresponding eigenvalue A. It follows
immediately that Q"u = A"u. But, since u is fixed, the vectors Q"u go to zero as n
increases, which implies that A" also goes to zero. Hence |A| < 1. This shows that
1 is never an eigenvalue of Q or, to put it another way, the determinant of I — Q is
nonzero. This is equivalent to the invertibility of I — Q.

We turn next to a study of the matrix (I — Q)~!. Our arguments may seem to
be a bit abstract but actually they are only an application of the idea of conditional
probability and conditional expectation.

Let #; ; be the average number of times that the process finds itself in a transient
state j given that it began in some transient state i. If j is different from i then
t; j is found by computing a conditional mean, reasoning much as in Lemma 1.1.
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In fact, the passage from i to j is through some intermediate state k. Given that
the process moves to & in the first step (with probability p; ;) the mean number
of times that j is visited beginning in state k is now # ;. The unconditional mean
is therefore p; 4, ; and we need to sum these terms over all transient states since
these correspond to disjoint events (see Figure 1.2):

li,j = Dis+ils+1,j ++++ DiNIN,j

In the event that i = j, the value of #;; is increased by one since the process
resides in state i to begin with. Therefore, for all states i and j for which s <

i,j <N,

N
tij =298+ Z Diklk, j (1.3)
k=s+1

where §; ; equals one if i = j, and is zero otherwise. In matrix terms (1.3) can be
written as T = I+ QT, where T is the N — s by N — s matrix with entries #; ;. It
follows that T = (I — Q).

Let #; be a random variable that gives the number of steps prior to absorption,
starting in state i. The expected value of #; is

N
E(t)= ) t; (1.4)

j=s+1

which is the ith component of the vector Te¢, where

and T = (I— Q). Vector Tc has N — s components and the ith one can therefore
be interpreted as the average number of steps before absorption when a chain
begins in transient state i.

The probability b; ; that absorption occurs in state j < s, given that it began
in some transient state i, can now be computed. Either state j is reached in a single
step from i (with probability p; ;) or there is first a transition into another transient
state k and from there the process is eventually absorbed in j (with probability by ;).
The reasoning is similar to that employed earlier. That is, since the moves from
i to k and then from & to j are independent by our Markov chain assumptions, we
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sum over N — s disjoint events corresponding to different intermediate states k:

N
bij=pij+ Y Pibe; s<i<N,j<s (15)
k=s+1

In matrix terms (1.5) becomes B = R + QB, where R and Q are defined in (1.1).
Now let 1; ; be the probability that a transient state j is ever reached from another
transient state i in a finite number of moves. If j differs from i then evidently

tij = hijtjj

and, because we must add one to the count of #; ; when i = j, in all cases one
obtains

tij =8 +hijt;. (1.6)

In matrix terms this is expressed as T = I + HTgj,g, Where Tgiag is the matrix
whose only nonzero elements are the diagonal entries of T = (I — Q)~! and H is
the matrix with entries 4; ;. Therefore

H = (T - DTy,

Note, for later use, that #;; = f;.
Relations (1.1) through (1.6) will be used in the remainder of this chapter.

1.3. Social Mobility

The tiny hermit crab Pagarus longicarpus does not possess a hard protective mantle
to cover its body and so it is obliged to find an empty snail shell to carry around
as a portable shelter. These empty refuges are scarce and only become available
when its occupant dies.

In a recent study of hermit crab movements in a tidal pool off Long Island
sound (see the references to Chase and others in Section 1.6) an empty shell was
dropped into the water in order to initiate a chain of vacancies. This experiment
was repeated many times to obtain a sample of over five hundred moves as vacan-
cies flowed from larger to generally smaller shells. A Markov chain model was
then constructed using about half this data to estimate the frequency of transitions
between states, with the other half deployed to form empirical estimates of certain
quantities, such as average chain length, that could be compared with the theo-
retical results obtained from the model itself. The complete set of experiments
took place over a single season during which the conditions in the lagoon did not
alter significantly. Moreover each vacancy move appeared to occur in a way that
disregarded the history of previous moves. This leads us to believe that a Markov



