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Preface

Structural crystallography provides key information to understand biological mech-
anisms. To this end the technique requires high-quality crystals which are necessary
for determining the structure and dynamics of biological macromolecules.

These structural objectives have required a concerted action across the field of
macromolecular crystallography over the last several decades and embraced various
science disciplines. Notably these have included molecular biology for sample
preparation and molecular engineering: a science and understanding for macromol-
ecular crystal-growth conditions; applied physics for improved X-ray and neutron
sources as well as detectors and for a characterization of the crystal perfection and
harnessing white-beam diffraction and anomalous scattering in data collection; soft-
ware for numerous stages of calculation: structural chemistry and biology for the
basis of enzymatic function and the mechanisms of disease; and finally systems
biology to gather these results into a unified genomic framework of interacting
proteins and nucleic acids.

The methods today have a sense of maturity: after all, the Protein Data Bank is on
target for 100 000 macromolecular crystal structures within a few years from now.
However, the motivation for this book stems from the fact that the field is still afresh
with change which arises for various reasons:

e the field continues to expand and new investigators and students are
turning to macromolecular crystallography for tackling critical biological and
chemical problems. often without training in physics in general or methods
in particular, and who we aim to serve in providing in one volume the key
topics of macromolecular crystallization and crystal use in diffraction structure
determination:

« the sources of X-ray and neutrons, and associated apparatus, are still changing
radically, bringing new capabilities:

* the understanding of crystal perfection as well as types of disorders and how to
deal with them is improving: the types of twinning and lattice disorders of
crystals is an excellent example and where protocols for remediation in the
most awkward cases are becoming known: there are more adventurous diffrac-
tion geometries for protein structure determination being developed including
protein powder X-ray diffraction and single-molecule structure determination
envisaged with the X-ray lasers that are coming on line.

* synchrotron X-ray microbeams will soon be routinely available to be applied to
micrometre and probably sub-micrometre crystals.

* the pixellated area detectors have recently arrived after many years of develop-
ment and will allow shutterless X-ray data collection as the norm;
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 consideration is now being made to archive raw diffraction images. This would
provide the most complete record for a given crystal’s diffraction characteristics
rather than the merged, unique. Bragg diffraction ‘spot intensities or amplitudes’
alone. An added benefit of this approach is that the information on the continuum
diffuse scattering would be retained until such time as its interpretation might
become fully possible thereby giving further insight into molecular flexibility
and motion;

* this book interfaces with the complementary techniques of structure determin-
ation which include solution small-angle X-ray scattering (SAXS), and
cryo—electron crystallography. microscopy and tomography applied to large
multi-macromolecular complexes.

We hope we have provided the reader with an overview of the complex topics

involved in structural crystallography together with some of the more esoteric areas
that can become very critical in key cases.

Naomi E. Chayen

London, UK

John R. Helliwell
Manchester, UK

Edward H. Snell
Buffalo, USA
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Introduction

Biological macromolecules are the machinery of life; visualizing their three-dimensional
structure helps us to fully understand their function. Visual observation with a
light microscope is not possible as their sizes are well below the wavelength of visible
light. While X-rays and neutrons allow visualization, they cannot be focused, so
diffraction techniques have to be used. An understanding of three-dimensional
macromolecular structure gives us a deeper understanding of basic biological con-
cepts and processes, reveals the causes of diseases, assists rational pharmaceutical
design and can lead to the design of macromolecules with novel properties. Visual-
izing these macromolecules is a complex ballet involving diverse but interrelated
fields of endeavour. In this book, we aim to describe in some detail these comple-
mentary techniques, which include crystallization, diffraction and analysis of the data
to obtain atomic structure from crystals of macromolecules. We cover areas where
problems can occur and potential solutions to those problems. Finally, we touch on
some of the developments in the not so distant future.

When we use the term crystal in the context of a biological macromolecule, we are
describing an ordered array of macromolecules in an environment that keeps them stable.
Biological macromolecules are predominantly made up of low atomic weight atoms,
including hydrogen, carbon, nitrogen. oxygen, sulphur and phosphorous. Unlike inor-
ganic crystals, a significant proportion (30-70%) of a macromolecular crystal is water
(Matthews, 1968). This makes biological crystallography challenging; the process of
crystallization is very complex and the crystals themselves diffract very weakly in
comparison to inorganic crystals due to the low atomic weight content and disordered
water making up a large proportion of the crystal volume. The biochemical and
biophysical process of crystallization is still a largely empirical process. High-throughput
technologies have been employed to speed up the crystallization process, allowing for
more experiments to be set up using less sample, but their greater power may be realized
if we achieve the array of experiments needed to better understand this complex process
to develop crystallization.

Once we get the crystals, technologies and methods have advanced significantly
and transformed our capabilities for structure analysis. In the X-ray field, highlights
of the last three decades have included synchrotron radiation, detectors and
cryo-crystallography. In a synergistic development neutron Laue methods, along
with very large area neutron-sensitive image plates, and new spallation source
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developments, are enhancing the potential for complete. i.e. with-H atoms (as
deuteriums), structures. Complementary to these are developments in molecular
biology techniques that go beyond the simple cloning and expression (production)
of the target sample. Rational mutagenesis is providing functional information and
being used to improve crystal quality, while fully perdeuterated protein production
is enabling neutron studies.

1.1 Crystal Growth

The history of crystallization has been described by McPherson (1991; 1999a). The
first published observation of crystallization. haemoglobin, was noted by Hiinefeld
(1840) when the blood of an earthworm was pressed between two microscope slides.
This was followed by a slow growth in a number of other crystallized macromol-
ecules until the 1930s when the pace quickened. Crystallization was initially used as a
method of isolation with Northrop, Sumner and Stanley sharing the 1946 Nobel Prize
for chemistry for the isolation and crystallization of proteins and viruses. The first
biomolecular crystal-structure determined was that of vitamin B-12 in 1957 by
Dorothy Crowfoot Hodgkin (1957) who subsequently won the Nobel prize for
chemistry as a result of the work. Initially there were no set rules or recipes as to
where to start to crystallize a macromolecule. Macromolecules were solubilized and
then treated with arrays of precipitants in order to find favourable conditions for
crystallization.

Crystallization is still largely empirical with many experiments sampling a large
range of possible crystallization conditions. This idea of a designed sampling of
many conditions, or screening. was introduced in 1979 (Carter and Carter). The
numerous experiments required repetitive pipetting, a laborious, time-consuming
and tedious task but the principal difficulty was attributing a quantitative score to
the results to enable a meaningful mathematical analysis. In the late 1980s and early
1990s, the development of automatic means of dispensing crystallization trials
(Chayen et al., 1992; Chayen et al., 1994: Chayen et al.. 1990; Cox and Wever,
1987; Oldfield ¢t al.. 1991: Rubin et al., 1991: Sadaoui et al., 1994; Soriano and
Fontecillacamps, 1993; Ward er «l., 1988) showed the promise of designed screen-
ing. However, it was not until the commercialization of a crystallization screen
developed by Jancarik and Kim (1991) that systematic screening became a standard
laboratory technique.

In the 1980s an effort was initiated to turn crystallization from an art into a science;
the first of a continuing series of international conferences on the subject occurred
(McPherson and Giege, 2007) and the term ‘crystallogenesis’ was coined (Giege
et al., 1986). The purpose of crystallogenesis was to understand the fundamental
principles of the crystallization process. to quantitatively measure the biophysical and
chemical parameters that are involved in crystal growth. and to use that knowledge to
design experiments for obtaining better diffracting crystals. Systematic studies were
performed mostly on lysozyme and other model proteins that crystallized with ease.
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The aim was to extrapolate that information to target proteins that were proving
difficult to crystallize. Progress was slow due to lack of suitable equipment for
monitoring the crystallization process and to the complexity of the problem. Even
the crystallization process for model proteins was not straightforward given the
number of variables that were involved. Considerable development effort has been
ongoing in the last 20 years on crystal-growth methods as well as more sophisticated
monitoring and characterization, such as use of light scattering, interferometry and
other techniques.

Much of the success of the last decade has come by way of automating and
miniaturizing crystallization trials (Kuhn er al., 2002; Luft er al., 2003; Walter
et al., 2003) and by way of the development of diagnostic apparatus to study the
crystallogenesis aspect of crystallization (Dierks er al., 2008; Yeh and Beale, 2007).
The ability to dispense trials consisting of nanolitre volumes in a high-throughput
mode has cut the time of setting up experiments from weeks to minutes, and reduced
sample requirements by an order of magnitude, a scenario that was unimaginable
even in the recent past. While high-throughput approaches and miniaturization do not
elicit a better understanding of crystallization. the analysis of these systematic and
highly reproducible trials will improve our comprehension of the crystallization
process, and application of these methods to specifically understand this process
will enable us to answer and then ask many more questions.

Having a well-diffracting single crystal is a first step, but is not necessarily
sufficient to solve the macromolecular structure. Detectors are able to measure the
position and intensity (amplitude) of scattered reflections, but do not record phase
information. In order to use a Fourier transform to go from a diffraction pattern, to an
interpretable electron-density map that can be used to model the structure, we need
phase information. We can use several approaches to provide an initial set of phases.
If the protein has fewer than 1,000 non-hydrogen atoms. and the resolution of the
diffraction data is near atomic resolution, we can use ab initio phasing (direct
methods) to solve the structure (Hauptman, 1997; Uson and Sheldrick, 1999), or if
there is significant sequence homology to other known structures, then molecular
replacement may be used to solve the structure without modifying the sample.

If not, sample modification will likely be required. This can be accomplished
by soaking, or co-crystallizing the sample with heavy atoms to provide phase
information for a sub-structure (Islam er al., 1998). Another approach, exploits
differences in diffraction intensities caused by anomalous scattering, absorbance of
X-rays by elements at wavelengths at, or near a particular element's absorption
edge. The most common application of this method uses molecular biology to
replace naturally occurring sulphur atoms in the protein's methionine residues with
selenium atoms, creating a selenomethionine variant (Hendrickson et al.. 1990). The
derivative is crystallized. and diffraction data collected at several wavelengths near
the selenium absorption edge: this is an example of MAD (multiple anomalous
dispersion) phasing. SAD (single anomalous dispersion) phasing is similar, but
uses only one wavelength, making this a better-suited method for radiation-sensitive
crystals (Gonzalez, 2007).



