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Preface

This book is based on lectures delivered in July-August 1972, at the Suceava Symmer
School organized by the Institute of Mathematics of the Academy of the Socialist
Republic of Romania, in cooperation with the Society of Mathematical Séfences.

The study of the algebras of operators in Hilbert spaces was initiated by F, Ji
Murray and J. von Neumann, in connection with some problems of theoretical physics.
The wealth of the mathematical facts contained in their fundamental papers. interested
many mathematicians. This soon led to the crystallization of a new branch of mdthe-
matics: the theory of algebras of operators. The first systematic exposition of this
theory appeared in the well-known monograph by J. Dixmier [26), which was sub-
titled Algébres de von Neumann. It expounded almost all the significant results achieved
until its appearance. Afterwards, the theory continued to develop, for it had import-
ant applications in the theory of group representations, in mathematical physics
and in other branches of mathematics. Of great importance were the results obtained
by M. Tomita, who exhibited canonical forms for arbitrary von Neumann algebras.
In recent times fine classifications and structure theorems have been obtained for von
Neumann algebras especially by A. Connes.

The present book contains what we consider to be the fundamental part of the
theory of von Neumann algebras. The book also contains the essential elements of
the spectral theory in Hilbert spaces. The material is divided into ten chapters; besides
the basic text, each chapter has two complementary sections: exercises, comments and
bibliographical comments. The book ends with a bibliography, which includes all the
titles we know of, which deal with the theory of algebras of operators and some related
fields.

The reader is supposed to know only some elementary facts from functional
analysis.

In writing this book we made use of existing books and courses (J. Dixmier
[26], [42], I. Kaplansky [22], J. R. Ringrose [3], [4], [5], S. Sakai[10], [32], M. Take-
saki [17], [18], D. M. Topping [8]), as well as many articles, some of them available
only as preprints. Some of the exercises are borrowed from J. Dixmier’s book [26).
For the bibliography we made much use of Israel Halperin’s Operator Algebras
Newsletter.

Thanks are due to Grigore Arsene and Dan Voiculescu for the help given during
the writing of this book, for the useful discussions and for the bibliographical infor-
mation they gave us.

We thank Sanda Strdtild for compiling the bibliography and for the
careful typing of the manuscript.

The Authors
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Introduction

In the study of operator algebras there are two main methods, the first is of an alge-
braic character, while the second is more analytic.

The algebraic method proceeds by a successive reduction of problems con-
cerning the arbitrary operators to problems about positive operators and from these
to problems about projections, where one can avail oneself of the lattice-theoretical
geometry of projections. In this geometry the main notion is that of equivalence
and the main result is the comparison theorem, an important technical device being
the polar decomposition of operators. These methods are elementary, but they
afford a clear classification of the von Neumann algebras into general types. The
results obtained by these methods are presented in Chapter 4 and in the first sec-
tions of Chapter 7.

The analytic method, which is more complex and profound, consists of
a systematic manipulation with linear forms defined on operator algebras; they
may be bounded, or unbounded. Here the important facts are concentrated around
certain results which extend the classical Lebesgue-Radon-Nikodym theorem, the
main technical tool here being the polar decomposition of linear forms. The ana-
lytic methods permit the analysis of relations existing between the given algebra and
its commutant, as well as of those which relate the predual of the given algebra
to the Hilbert space in which this algebra is operating. In Chapter 6 the relations
existing between the type of the given algebra and of its commutant are studied,
whereas Chapters 7 and 8 exhibit the quantitative relations which measure the
relative wealth of the given algebra and of its commutant. For finite von Neumann
algebras the existence of a trace which measures the relative dimension of projections
allows the evaluation of the quantitative relations between the given algebra and
its commutant by a coupling function of a metric nature. In other, more general,
cases, the coupling between the given algebra and its commutant can be measured
only by projective objects, namely cardinals associated with central projections,
but the information thus obtained is not always satisfactory.

The von Neumann algebras which are well equilibrated with their commu-
tants are called standard von Neumann algebras, and the main result of Chapter
10 is that any von Neumann algebra is isomorphic to a standard von Neumann
algebra in a canonical form. This has been known for a long time in the case of
the semifinite von Neumann algebras; to be extended to the general case, it re-
quired a new technique namely a “polar decomposition’ for the involution of the
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algebra. Chapter 10 is dedicated to the study of the canonical forms of the von
Neumann algebras as well as to some applications to the theory of arbitrary von
Neumann algebras.

The theory of operator algebras is based on two fundamental results: the
density theorem of J.von Neumann and the density theorem of I. Kaplansky, both
presented in Chapter 3.

The present book covers results contained in M. Takesaki’s work [18], and,
with the exception of the reduction theory and of the examples of factors included
there, those of J. Dixmier’s book [26].

The reduction theory aims at decomposing an arbitrary von Neumann algebra
into a family of von Neumann algebras with trivial centers (the so-called factors),
in such a manner that the algebra be obtainable from this family, whereas its pro-
perties will be derivable from those of the factors. In this manner, the reduction
theory transfers to the factors the purely non-commutative part of the algebra,
whereas the commutative part is reflected in the space of the indices of the family
of factors; the main problem of the structure and classification of the von Neumann
algebras is thus reduced to the corresponding problems for factors. For the reduc-
tion theory one can read J. Dixmier’s book [26], as well as the expository article
by L. Zsid6 [3], based on the ideas of S. Sakai [11]. Both develop the classical
reduction theory of J. von Neumann, but from seemingly different points of view,
which can easily be shown to be similar. For factor theory we recommend the works
of J. Dixmier [26], [52], S. Sakai [32], D. McDuff [3], H. Araki and E. J. Woods
[3], A. Connes [15], [19], [21 — 24]. Important results concerning the structure
of von Neumann algebras are contained in the works of A. Connes [6], [7], and
M. Takesaki [29], [33].

Our exposition refers to the spatial theory of von Neumann algebras, which
considers them as being subalgebras of the algebra of all bounded linear operators
on a Hilbert space. S. Sakai obtained in [3] the abstract characterization of von
Neumann algebras and developed the theory of von Neumann algebras by non-
spatial methods. Thus, in S. Sakai’s book [32] the reader will find some of the
results we present here, with different proofs. Also, S. Sakai’s book [32] contains
some other results which are not included in the present book.

‘““Algebras of operators” usually designate something more general than von
Neumann algebras, the so-called C*-algebras. In our exposition we have only inci-
dentally referred to the C*-algebras, but this theory makes full use of the theory
of von Neumann algebras. For this theory, as well as for its applications to the
theory of group representations, we refer the reader to J. Dixmier’s monograph [42].

Other topics connected with the theory of operator algebras, but not treated
in the present book, are the foliowing: the problem of the generation of von
Neumann algebras (see D. M. Topping [8], T. Saitd [10]), non-commutative
harmonic analysis and duality theory for locally compact groups (see P. Eymard
[1], M. Takesaki [23], M. Walter [2], [4], J. Ernest [5], [8]), non-commutative
ergodic theory (see A. Guichardet [18]), applications to the theory of ope-
rators (see R. G. Douglas [3], [4], J. Ernest [9]), connections with some
problems of theoretical physics (see D. Kastler [1], [3], G. E. Emch [2], D. Ruelle [4]).
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Although rather a long time has elapsed since the publication of the works
by F. J. Murray and J. von Neumann and their results are included in the books
mentioned above, we consider that their works are still worth reading for those
interested in the theory of operator algebras.

The present book is self-contained with complete proofs. The exercises con-
tain results which enrich the text and which can be proved with the methods
described in it; the more difficult exercises are marked by an asterisk, whereas
some of the exercises which offer no difficulty are used in the main text and are
marked by the symbol “!”.

The final sections of each chapter include complements which contain biblio-
graphical references, as well as the names of the mathematicians to whom the
results contained in each chapter are to be ascribed.

The bibliography lists the works on operator algebras theory, as well as entries
concerning the theory of group representations, mathematical physics and operator
theory.






1

Topologies on spaces
of operators

In this chapter we introduce the main topologies in the space Z(#) of all bound-
ed linear operators on a Hilbert space.

1.1. Lemma. Let & be a vector space, ¢ a linear form on & and p,, p,,. .., p, semi-
norms on &, such that

lo(x)| < i p(x), x€é.
k=1

Then there exist linear forms ¢y, ..., @, on &, such that

¢= Z(pk,
k=1
lo(x)| < pu(x), x€é8, k=1,...,n

Proof. Let &" be the Cartesian product of n copies of & 2 < &" the
diagonal of ", p the semi-norm on &” defined by

P(xv c ey xn) = Z pk(xk)s (x19 “ ey xn) € g"’
k=1

and @, the linear form on 2 defined by
@o(x,---yx)=(l’(x)» xeé.

From the hypothesis we immediately infer that the linear form @, on 2 is majorized
on 2 by the semi-norm p. With the Hahn-Banach theorem we infer that there
exists a linear form @ on &”, having the following properties

P(Xyeve s X)= Po(X5. .., X), x€ 8,

[@(1ye e os Xp) | < P(X1eees X))y (Xpyeeny x,)€E™
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We then define the forms ¢, by the relations
o(x) = ¢(0,...,0,x,0,...,0), xe€é&, k=1,...,n,

where, in the right-hand member, x stands on the k-th place.
The linear forms thus defined satisfy the conditions of the statement.

Q.E.D.

1.2. Let & be a Banach space, &* the dual of & and & a vector subspace of &*.
We denote by o(&; #) the weak topology defined in & by the family & of linear
forms; then the o(&; #)-topology is defined by the family of semi-norms {p,; ¢ € #},
where

Po(¥) = |p(x)|; x€é.

We consider the norm topology in &* and we denote by % the closure of &
in this topology. We denote by &, the closed unit ball in &.

Lemma. Let & be a Banach space, ¥ < &* a vector subspace and ¢ a linear
form on &.

() ¢ is o(&; F)-continuous iff*) pe F.

(i) ¢ is a(&; F)-continuous on &, iff @ eF.

(iii) The topologies o(&; F) and o(&; F) coincide on &,.

(iv) If & is closed in the norm topology and ¢ is o(&; F)-continuous on &,
then @ is o(&; F)-continuous on &.

Proof. (i) Obviously, if ¢ € #, then ¢ is o(&; &)-continuous. Conversely,
if ¢is o(&; #)-continuous, then there exist Y,. .., ¥, € Z, such that

lox) | < Y p, (%), x€8.
k=1

By virtue of Lemma 1.1, there exist linear forms ¢,,. .., ¢, on &, such that
”
=Y o
k=1

|(pk(x), <pwk(x) = llpk(x)]’ xeé;, k = 1" ey N

If Y, = 0, then ¢, = 0. If Y, # 0, then there exists x, € &, such that y,(x) =1
and, for any x € &, we have

| ol — YiX)xi) | < | Ylx — Yi(x)x) | = 0.

Consequently, we have

o= @uxYr€ F and ¢ = Y ¢ F.
k=1

*) ‘Iff” stands for ‘if and only if’.



TOPOLOGIES ON SPACES OF OPERATORS 15

(ii) It is easily seen that if ¢ € #, then the restriction of ¢ to &, is
o(&; F)-continuous. Conversely, let ¢ be a linear form on &, whose restriction
to &,is o(&; F) continuous. Then ¢ is norm-continuous and, therefore ¢ e &*.
Let ¢ > 0 be an arbitrary positive real number. Since the restriction of ¢ to &,

is (& ; #)-conitnuous at 0, we infer that there exist linear forms y,,..., ¥, F
such that:

Ixl <1, ¥ £, () < 1= [0()] <e.
k=1
Hence we immediately infer that, for any x € &, we have
le(x)| < ellxll + lloll Y, Py, *)-
k=1

By virtue of Lemma 1.1, it follows that there exist linear forms ¢,, ¢, on &,
such that

© = 01+ @,
|pi(x)| < elxll, xeé,

10| <llol Y, £, (¥), xe8.
k=1

Consequgtly, @€ F and |@ — @]l = ||@1] < e. Since ¢ > 0 was arbitrary, we
get p e £
Statements (iii), (iv) immediately follow from (i) and (ii).
Q.E.D.
1.3. Let 5 be a Hilbert space and %(o#) the space of all bounded linear operators

on . We consider #(s#) as a Banach space only with respect to the usual ope-
rator norm:

Ixll = sup {Ilx¢ll; &ex, |&| =1} |
For &, n e we define a linear form w, , on #(o#) by: 3 /\l // \
wg ,(X) = (xE|m), xeB@F). N7 7

Obviously, w, ,€ #(#)* and it is easily checked that [w, ,[ = [[-[n]. The
form w,, . will be simply denoted by w,.
Let #(o#)_ be the vector’space generated in Z(#)* by the forms w; ,,
¢, nes, whereas B(#), denotes the norm closure of B(#)_in B(H)*. -
Besides the norm topology we shall also consider the following topologies
in Z(s#): the weak operator topology, or the wo-topology: it is the topology defined
by the family of semi-norms

BAH)sx > |[(xEIn)]|, & nedt;

in other words, it is just the o(#(o#); #(o#)_)-topology;
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the strong operator topology, or the so-topology: it is the topology defined
by the family of semi-norms:

B(H) > x> ||IxE|l, Eedt;
the ultraweak operator topology, or the w-topology: it is, by definition, the
a(B(H); B(#),)-topology.
We now apply Lemma 1.2, where we make & = #(¢), F= %#(#)_ and

F = B(H),, and by taking into account the terminology just introduced, we get
the following

Lemma. Let S be a Hilbert space. Then:
(i) B(HK)_ is the set of all wo-continuous linear forms on B(H).
(ii) B(#), is the set of all w-continuous linear forms on B(¥).

(iii) A linear form ¢ on B(H) is w-continuous iff its restriction to B(H')
is wo-continuous.

@iv) In B(H#), the wo-topology and the w-topology coincide.
1.4. Theorem. A linear form ¢ on B(H) is wo-continuous iff it is so-continuous.

Proof. 1t is easy to see that the so-topology is finer (stronger), than the
wo-topology; therefore, any wo-continuous linear form is so-continuous. Conver-
sely, if ¢ is so-continuous, then there exist non-zero vectors &,,. . ., &, € #, suchthat

10() | < Y IxE], x e BEP).
k=1

From Lemma 1.1, there exist linear forms ¢,,. . ., ¢, on %(3), such that

(X)) | < Ix&ll, xeB(H), k=1,...,n.

Let ke {l,...,n} be any fixed index. We obviously have o# = {x&;; x € B(¥)}.
As a consequence of what we have already proved, the mapping

x& > 0 (x)

is a bounded linear form on s#. With Riesz’ theorem we infer that there exists
N €3¢, such that @ (x) = (x&;|m), x € B(HK).

Consequently, for any k there exists an #, € ¢, such that ¢,= @ e Therefore

(P: Z (pkeg(‘#).,,

k=1

i.e., ¢ is wo-continuous.



