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LIE GROUPS, PHYSICS, AND GEOMETRY

An Introduction for Physicists, Engineers and Chemists

Describing many of the most important aspects of Lie group theory, this book
presents the subject in a ‘hands on’ way. Rather than concentrating on theorems
and proofs, the book shows the relation of Lie groups with many branches of
mathematics and physics, and illustrates these with concrete computations. Many
examples of Lie groups and Lie algebras are given throughout the text, with appli-
cations of the material to physical sciences and applied mathematics. The relation
between Lie group theory and algorithms for solving ordinary differential equa-
tions is presented and shown to be analogous to the relation between Galois groups
and algorithms for solving polynomial equations. Other chapters are devoted to
differential geometry, relativity, electrodynamics, and the hydrogen atom.

Problems are given at the end of each chapter so readers can monitor their
understanding of the materials. This is a fascinating introduction to Lie groups
for graduate and undergraduate students in physics, mathematics and electrical
engineering, as well as researchers in these fields.

ROBERT GILMORE is a Professor in the Department of Physics at Drexel Univer-
sity, Philadelphia. He is a Fellow of the American Physical Society, and a Member
of the Standing Committee for the International Colloquium on Group Theoretical
Methods in Physics. His research areas include group theory, catastrophe theory,
atomic and nuclear physics, singularity theory, and chaos.



Preface

Many years ago I wrote the book Lie Groups, Lie Algebras, and Some of Their
Applications (New York: Wiley, 1974). That was a big book: long and difficult. Over
the course of the years I realized that more than 90% of the most useful material
in that book could be presented in less than 10% of the space. This realization was
accompanied by a promise that some day I would do just that — rewrite and shrink
the book to emphasize the most useful aspects in a way that was easy for students
to acquire and to assimilate. The present work is the fruit of this promise.

In carrying out the revision I have created a sandwich. Lie group theory has its
intellectual underpinnings in Galois theory. In fact, the original purpose of what
we now call Lie group theory was to use continuous groups to solve differential
(continuous) equations in the spirit that finite groups had been used to solve alge-
braic (finite) equations. It is rare that a book dedicated to Lie groups begins with
Galois groups and includes a chapter dedicated to the applications of Lie group
theory to solving differential equations. This book does just that. The first chapter
describes Galois theory, and the last chapter shows how to use Lie theory to solve
some ordinary differential equations. The fourteen intermediate chapters describe
many of the most important aspects of Lie group theory and provide applications
of this beautiful subject to several important areas of physics and geometry.

Over the years I have profited from the interaction with many students through
comments, criticism, and suggestions for new material or different approaches to
old. Three students who have contributed enormously during the past few years
are Dr. Jairzinho Ramos-Medina, who worked with me on Chapter 15 (Maxwell’s
equations), and Daniel J. Cross and Timothy Jones, who aided this computer illit-
erate with much moral and ebit ether support. Finally, I thank my beautiful wife
Claire for her gracious patience and understanding throughout this long creation
process.

Robert Gilmore

Xi
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1

Introduction

Lie groups were initially introduced as a tool to solve or simplify ordinary
and partial differential equations. The model for this application was
Galois’ use of finite groups to solve algebraic equations of degree two,
three, and four, and to show that the general polynomial equation of
degree greater than four could not be solved by radicals. In this chapter
we show how the structure of the finite group that leaves a quadratic,
cubic, or quartic equation invariant can be used to develop an algorithm
to solve that equation.

1.1 The program of Lie

Marius Sophus Lie (1842-1899) embarked on a program that is still not complete,
even after a century of active work. This program attempts to use the power of the
tool called group theory to solve, or at least simplify, ordinary differential equations.

Earlier in nineteenth century, Evariste Galois (1811-1832) had used group theory
to solve algebraic (polynomial) equations that were quadratic, cubic, and quartic.
In fact, he did more. He was able to prove that no closed form solution could be
constructed for the general quintic (or any higher degree) equation using only the
four standard operations of arithmetic (+, —, x, =) as well as extraction of the nth
roots of a complex number.

Lie initiated his program on the basis of analogy. If finite groups were required
to decide on the solvability of finite-degree polynomial equations, then “infinite
groups” (i.e., groups depending continuously on one or more real or complex vari-
ables) would probably be involved in the treatment of ordinary and partial differen-
tial equations. Further, Lie knew that the structure of the polynomial’s invariance
(Galois) group not only determined whether the equation was solvable in closed
form, but also provided the algorithm for constructing the solution in the case
that the equation was solvable. He therefore felt that the structure of an ordinary
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differential equation’s invariance group would determine whether or not the equa-
tion could be solved or simplified and, if so, the group’s structure would also provide
the algorithm for constructing the solution or simplification.

Lie therefore set about the program of computing the invariance group of ordinary
differential equations. He also began studying the structure of the children he begat,
which we now call Lie groups.

Lie groups come in two basic varieties: the simple and the solvable. Simple
groups have the property that they regenerate themselves under commutation.
Solvable groups do not, and contain a chain of subgroups, each of which is an
invariant subgroup of its predecessor.

Simple and solvable groups are the building blocks for all other Lie groups.
Semisimple Lie groups are direct products of simple Lie groups. Nonsemisimple Lie
groups are semidirect products of (semi)simple Lie groups with invariant subgroups
that are solvable.

Not surprisingly, solvable Lie groups are related to the integrability, or at least
simplification, of ordinary differential equations. However, simple Lie groups are
more rigidly constrained, and form such a beautiful subject of study in their own
right that much of the effort of mathematicians during the last century involved the
classification and complete enumeration of all simple Lie groups and the discussion
of their properties. Even today, there is no complete classification of solvable Lie
groups, and therefore nonsemisimple Lie groups.

Both simple and solvable Lie groups play an important role in the study of differ-
ential equations. As in Galois’ case of polynomial equations, differential equations
can be solved or simplified by quadrature if their invariance group is solvable.
On the other hand, most of the classical functions of mathematical physics are
matrix elements of simple Lie groups, in particular matrix representations. There
is a very rich connection between Lie groups and special functions that is still
evolving.

1.2 A result of Galois

In 1830 Galois developed machinery that allowed mathematicians to resolve ques-
tions that had eluded answers for 2000 years or longer. These questions included
the three famous challenges to ancient Greek geometers: whether by ruler and
compasses alone it was possible to

* square a circle,
* trisect an angle,
e double a cube.
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His work helped to resolve longstanding questions of an algebraic nature: whether
it was possible, using only the operations of arithmetic together with the operation
of constructing radicals, to solve

e cubic equations,
* quartic equations,
* quintic equations.

This branch of mathematics, now called Galois theory, continues to provide pow-
erful new results, such as supplying answers and solution methods to the following
questions.

¢ (Can an algebraic expression be integrated in closed form?
¢ Under what conditions can errors in a binary code be corrected?

This beautiful machine, applied to a problem, provides important results. First, it
can determine whether a solution is possible or not under the conditions specified.
Second, if a solution is possible, it suggests the structure of the algorithm that can
be used to construct the solution in a finite number of well-defined steps.

Galois’ approach to the study of algebraic (polynomial) equations involved two
areas of mathematics, now called field theory and group theory. One useful state-
ment of Galois’ result is the following (Lang, 1984; Stewart, 1989).

Theorem A polynomial equation over the complex field is solvable by radicals
if and only if its Galois group G contains a chain of subgroups G = Gy D G| D
-++ D G, = I with the properties:

(1) G4 is an invariant subgroup of G;;
(i1) each factor group G;/G;4; is commutative.

In the statement of this theorem the field theory niceties are contained in the term
“solvable by radicals.” This means that in addition to the four standard arithmetic
operations +, —, X, < one is allowed the operation of taking nth roots of complex
numbers.

The principal result of this theorem is stated in terms of the structure of the group
that permutes the roots of the polynomial equation among themselves. Determining
the structure of this group is a finite, and in fact very simple, process.

1.3 Group theory background

A group G is defined as follows. It consists of a set of operations G = {g, g2, ...},
called group operations, together with a combinatorial operation, -, called group
multiplication, such that the following four axioms are satisfied.
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(i) Closure: if g; € G, g; € G, theng; - g; € G.
(ii) Associativity: forall g; € G, g; € G, g € G,

(8i - 8j)- 8 =8 (& - &)
(iii) Identity: there is a group operation, / (identity operator), with the property that
gi-l=g =18
(iv) Inverse: every group operation g; has an inverse (called g;- h:
gi-g =1=g -8

The Galois group G of a general polynomial equation

z—z21)z—22) - (z—2,) =0

=L '+ b+ (-1, =0 (1.1)
is the group that permutes the roots zy, 22, . . ., z, among themselves and leaves the
equation invariant:

<1 Zi
22 Ziz

— | . (1.2)
Zn Zi,

This group, called the permutation group P, or the symmetric group S,, has n!
group operations. Each group operation is some permutation of the roots of the
polynomial; the group multiplication is composition of successive permutations.
The permutation group S, has a particularly convenient representation in terms
of n x n matrices. These matrices have one nonzero element, +1, in each row
and each column. For example, the 6 = 3! 3 x 3 matrices for the permutation

representation of S; are
1 0 0 01 0 0 0 1
I—- 10 1 0 (123)) - 10 0 1 @2 -1 0 0
0 0 1 1 0 O 01 0

(1.3)

==
o - o
i
W
N’
- o o
o~
oo~

010 1
12)—- 11 0 0 23)—> | 0
0 0 1 0
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The symbol (123) means that the first root, zi, is replaced by z5, z» is replaced by
z3, and z3 is replaced by z;

4 (123) -
2| — |z (1.4)
23 <1

The permutation matrix associated with this group operation carries out the same
permutation

Z9, 0 1 0 21
zz =10 0 1 22 (1.5)
21 1 0 O 5

More generally, a matrix representation of a group is a mapping of each group
operation into an n X n matrix that preserves the group multiplication operation

8i : &j = 8i " 8j
¥ b d a8 (1.6)
I'g) x I'(g)) = T'gi-g)j)

Here - represents the multiplication operation in the group (i.e., composition of sub-
stitutions in S,,) and x represents the multiplication operation among the matrices
(i.e., matrix multiplication). The condition (1.6) that defines a matrix representa-
tion of a group, G — I'(G), is that the product of matrices representing two group
operations (I'(g;) x I'(g;)) is equal to the matrix representing the product of these
operations in the group (I'(g; - g;)) for all group operations g;, g; € G.

This permutation representation of S3 is 1:1, or a faithful representation of Ss,
since knowledge of the 3 x 3 matrix uniquely identifies the original group operation
in S3.

A subgroup H of the group G is a subset of group operations in G that is closed
under the group multiplication in G.

Example The subset of operations 7, (123), (321) forms a subgroup of Ss3. This
particular subgroup is denoted A; (alternating group). It consists of those oper-
ations in S3 whose determinants, in the permutation representation, are +1. The
group S3 has three two-element subgroups:

$:(12) = {1, (12)}
S$,(23) = {1, (23)}
$:(13) = {1, (13)}

as well as the subgroup consisting of the identity alone. The alternating subgroup
A3 C §3 and the three two-element subgroups S»(ij) of S; are illustrated in Fig. 1.1.
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S3

v

As S»(12)  S»(13)  S»(23)

v

I

Figure 1.1. Subgroups of S3.

The set of operations /, (123), (12)does not constitute a subgroup because products
of operations in this subset do not lie in this subset: (123) - (123) = (321), (123) -
(12) = (23), etc. In fact, the two operations (123), (12) generate S; by taking
products of various lengths in various order.

A group G is commutative, or abelian, if

88 =8j" 8 (L.7)
for all group operations g;, g; € G.
Example S; is not commutative, while A3 is. For S3 we have

(12)(23) = (321)

(123) # (321) (1.8)
(23)(12) = (123)

Two subgroups of G, H; C G and H, C G are conjugate if there is a group
element g € G with the property

gHg '=H, (1.9)
Example The subgroups S>(12) and S,(13) are conjugate in S; since
(23)$(12)(23)"! = (23) {1, (12)} 23) " = {1, (13)} = $,(13) (1.10)

On the other hand, the alternating group As C S3 is self-conjugate, since any
operation in G = §3 serves merely to permute the group operations in A3 among
themselves:

(23)43(23)7" = (23) {1, (123), (321)} (23)~! = {I, (321), (123)} = A3 (1.11)

A subgroup H C G which is self-conjugate under all operations in G is called
an invariant subgroup of G, or normal subgroup of G.
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Figure 1.2. Subgroups of S3, combining conjugate subgroups.

In constructing group-subgroup diagrams, it is customary to show only one of
the mutually conjugate subgroups. This simplifies Fig. 1.1 to Fig. 1.2.

A mapping f from a group G with group operations g1, g2, ... and group multi-
plication - to a group H with group operations /, h,, ... and group multiplication
x is called a homomorphism if it preserves group multiplication:

8i : 8j = 8i " 8j
U A e (1.12)
fg) x f(g)) = f(g-g))

The group H is called a homomorphic image of G. Several different group ele-
ments in G may map to a single group element in H. Every element h; € H has
the same number of inverse images g; € G. If each group element 4 € H has a
unique inverse image g € G (h) = f(g1)and hy = f(g2),h1 = hy = g1 = g2) the
mapping f is an isomorphism.

Example The 3:1 mapping f of Sz onto S, given by

S5 NS

1.(123). 321) — I (1.13)
(12). 23), 31) —> (12)

is a homomorphism.

Example The 1:1 mapping of S3 onto the six 3 x 3 matrices given in (1.3) is an
isomorphism.

Remark Homomorphisms of groups to matrix groups, such as that in (1.3), are
called matrix representations. The representation in (1.3) is 1:1 or faithful, since
the mapping is an isomorphism.

Remark Isomorphic groups are indistinguishable at the algebraic level. Thus,
when an isomorphism exists between a group and a matrix group, it is often



