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Preface

A discrete-time stationary stochastic process is said to have long memory
if its autocovariances tend to zero hyperbolically slowly as the lag tends to
infinity, but their sum diverges. Such processes have unbounded spectral
densities at the origin. This is unlike the so-called short memory processes
where autocovariances are summable, often tending to zero exponentially
fast and whose spectral densities are bounded at the origin.

Ever since the work of Hurst (1951, 1956), the proponent of the Aswan
High Dam, more and more scientists have found the presence of long mem-
ory in their data. Hurst noticed that measurements on the Nile River were
not consistent with the assumption of independence. Mandelbrot and van
Ness (1968) and Mandelbrot and Wallis (1969a,b) were the first to provide
a theoretical justification for this by advancing the idea that the data ob-
served by Hurst follow a long memory process. They proposed the use of
fractional Brownian motion, as opposed to classical Brownian motion, to
model and analyze various phenomena in hydrology, and more generally,
for modeling a long memory time series. The review paper of Lawrance
and Kottegoda (1977) nicely summarizes this fact and some of the other
stochastic models used in the modeling of river-flow time series.

Box and Jenkins (1970) popularized the idea of obtaining a station-
ary time series by differencing the given, possibly non-stationary, time se-
ries. Numerous time series in economics are found to have this property,
i.e., even though the initial time series is not stationary, its dth-order dif-
ference, for some positive integer d, is stationary. Subsequently, Granger
and Joyeux (1980) and Hosking (1981) found examples of time series whose
fractional difference is a short memory process, in particular, white-noise,
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while the initial series has unbounded spectral density at the origin. Beran
(1992a) gives examples from numerous other sciences where data follow long
memory. Baillie (1996) cites several references that demonstrate the dra-
matic empirical success of long memory processes in modeling the volatil-
ity of the asset prices and power transforms of stock market returns while
Ding and Granger (1996) point out the long memory property of the ab-
solute values and the squares of S&P 500 daily stock market index re-
turns. Willinger, Paxson, Riedi and Tagqu (2003) discuss the importance
of long memory processes in network traffic data.

For classical time-series analysis the text of Brockwell and Davis (1991)
is an excellent source. The monograph of Beran (1994) provides a nice intro-
duction to some basic notions and applications of long memory processes.
However, there have been significant advances in theoretical aspects of long
memory processes since the mid-1990s that need to be made available in
a unified fashion in one place. The monographs by Doukhan, Oppenheim
and Taqqu (2003), Dehling, Mikosch and Sgrensen (2002), and Robinson
(2003) consist of collections of papers that discuss and review various the-
oretical results of long memory processes and their applications, while that
of Teyssiere and Kirman (2007) contains a collection of papers that empha-
size the presence of long memory in economics and finance. The text of
Palma (2007) summarizes some statistical theory and applications of these
processes. Some theoretical aspects of asymptotic theory for long memory
processes are discussed in Chapter 5 of the monograph by Taniguchi and
Kakizawa (2000). Various connections of long memory with non-stationary
and regime switching processes, self-similar processes, and the Hurst phe-
nomenon are outlined in Samorodnitsky (2007).

At present there is a need for a text where an interested reader can me-
thodically learn some basic asymptotic theory techniques found useful in
the analysis of statistical inference procedures for long memory processes.
This text makes an attempt in this direction. Our goal here is to provide in
a concise style a text at the graduate level summarizing theoretical develop-
ments both for short and long memory processes and their applications to
statistics. It also contains some real-data applications and mentions some
unsolved inference problems for interested researchers in the field at the
time of writing this monograph.
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This book can be used by doctoral students needing to familiarize them-
selves with the detailed proofs and derivations. It can also be used as a
source of theoretical tools for further investigations in econometrics and
statistics and as a theoretical background for practical applications and
modeling. Parts of the text can also be used by students in Masters’ pro-
grams in statistics or econometrics.

The literature on long memory processes is vast. We were influenced
by numerous works and the ideas of researchers working in the field. We
would like to thank our teachers, colleagues, co-authors, and students. In
particular, we are grateful to Rainer Dahlhaus, Ronald L. Dobrushin, Peter
C.B. Phillips, Peter M. Robinson, and Murad S. Tagqu. We thank Violetta
Dalla for providing some of the graphs and simulations included in this
text, and Natalia Bailey and Remigijus Leipus for careful reading of the
manuscript. We are also grateful to Shama Koul and Rita Surgailiené
for their patience and support during this long quest. We thank Shama
and Ajeet Koul for hosting numerous dinners and facilitating a conducive
atmosphere for the completion of this project.

The Department of Statistics and Probability at Michigan State Uni-
versity, the School of Economics and Finance of Queen Mary, University
of London, and the Institute of Mathematics and Informatics, Vilnius Uni-
versity, have been particularly generous in providing excellent support and
working environments.

During the preparation of this monograph the authors were sup-
ported in part by the NSF DMS Grants 00-71619, 07-04130, ESRC Grant
RES062230790, and a grant from the Lithuanian State Science and Studies
Foundation and the Research Council of Lithuania.

Liudas Giraitis
School of Economics and Finance

Queen Mary, University of London
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Notation and Conventions

The following notation and conventions are used throughout the book. The

”»

symbol “:=" stands for “by definition”. All limits are taken as n — oo,

unless specified otherwise.
R :=(—00,00), R:=[-00,00], R* :=[0,00).
Z:={0,£1,£2,---}, I:=[-m 7], i:=(-1)"2
a.e. := almost everywhere.
a.s. := almost surely.
aAb:=min(a, b), aVb:=max(a,b).
B(a,b) := /1 w1 —w)®tdu, a Ab > 0.
CLT := tlcl)e central limit theorem.
C(A) := class of continuous functions defined on a set A.
C-S := the Cauchy—Schwarz inequality.
DCT := the dominated convergence theorem.
ET := the ergodic theorem.
d.f. := distribution function.
ll9]loo := the supremum norm over the domain of a function g.
I(A) := indicator of the set A.
ii.d. := independent identically distributed.
Lh.s. := left-hand side.
Ly(A) := class of p-integrable functions defined on a set A, p € R.

Xv
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MSE := mean-squared error.
N4(0, C) := a g-variate normal distribution with the mean
vector 0 and the covariance matrix C.
N(0,1) := N1(0,1).
® := the d.f. of N(0,1) r.v.
r.h.s. := right-hand side.

r.v. := random variable or vector.
O,p(1) := a sequence of r.v.’s that is bounded, in probability.
op(1) := a sequence of r.v.’s converging to zero, in probability.
sgn(+) := sign function.

)
lz]
[z] .= |z],z>0; [z] +1,z<0.

2o = (1 — a)th percentile of A/(0,1) distribution, 0 < o < 1.

the largest integer not greater than x.

Z :=a N(0,1) r.v., unless mentioned otherwise.
w.r.t. :== with respect to.
up(1) := a sequence of stochastic processes converging to zero uniformly

over the time domain, in probability.

Equality of distribution is denoted by =p, while —, and —p, respec-
tively, denote the convergence in probability and in distribution.

For a sequence of stochastic processes {Y,Y,, n > 1}, Y, —ua Y
denotes the weak convergence of finite-dimensional distributions of Y;, to
the corresponding finite-dimensional distributions of Y, and Y,, = Y means
that Y,, converges weakly to Y in the given topology.

For any two real sequences ay, b,,n > 1, a, ~ b, denotes convergence
an/bn, — 1, and a,, b, means that C; < a, /b, < Cy, for some C1,Cs > 0,
as n — oo.

The kth derivative of a smooth function ¢ is denoted by ¢*), k =
1,2,---. Often we write g = g1, g = ¢g(¥.
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Chapter 1

Introduction

In this text the dependence structure of a stationary process is described by
its autocovariance and spectral density functions. In addition, it is assumed
that the given stationary process has a linear structure with either i.i.d. or
white-noise innovations. The rate of decay of the coefficients of a linear
process determines the type of dependence, which may be weak or strong.

A discrete-time stationary stochastic process X, j € Z, with finite
variance is said to have long memory if its autocovariances (k) :=
Cov(Xo, Xk) ~ cy|k|~2¢ tend to zero hyperbolically slowly in the lag k,
for some 0 < d < 1/2 and finite ¢y # 0. The sum of autocovariances of
a long memory process diverges, and such processes have an unbounded
spectral density at the origin. In contrast, a weakly dependent or short
memory process has absolutely summable autocovariances that often tend
to zero exponentially fast, and a continuous and bounded spectral density.
Numerous classical methods that are useful in analyzing weakly dependent
stationary time series are inapplicable to long memory processes. The ul-
timate statistical inference theory must be broad enough to accommodate
both short and long memory processes.

The need for new statistical inference methods arises, for instance,
from the fact that under long memory the sample mean estimate X, :=
n~!'3% ) X; of the mean u = EX; of a linear process is consistent

4-1/2 which is slower than the classical rate n~'/2, while

at the rate n
n'/2=4(X, — u) is still asymptotically normally distributed. Thus the use
of the classical confidence intervals for y based on n'/? scaling is unjustified.

In long memory processes, the dependence between the current obser-

vation and the one at a distant future is persistent, i.e., observations that
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are distant from each other continue to have a linear relationship. This fact
alone leads to some surprising results. For example, under long memory,
any other location invariant estimator fi,, of p is a first-order equivalent
to X,, i.e., n'/27%(j1, — X,,) tends to zero, in probability. In comparison,
for weakly dependent processes, observations distant from each other are
approximately uncorrelated, which in turn yields that the weak limit of
n'/?(fi, — X,) is non-degenerate Gaussian, for a large class of estimators
[in. Similar first-order degeneracy is observed between the least-squares es-
timator and the robust estimators in linear and non-linear regression models
when errors follow a long memory moving-average process. This is discussed
in Chapters 10 and 11. A resounding conclusion from these results is that
in the presence of long memory moving-average errors, there is no gain
in using robust estimators of regression parameters over the least-squares
estimator, for the purpose of the first-order large sample inference.

In order to develop a rigorous asymptotic theory we need various prelim-
inaries. Chapter 2 reviews some facts from trigonometric series, analysis,
and probability. It includes some examples of time-series models and defi-
nitions of slowly varying functions and Hermite and Appell polynomials.

Chapter 3 defines short and long memory processes in the time and
spectral domains, and provides some characteristics of these processes. This
chapter also discusses self-similar processes and fractional Brownian motion
and their connection with long memory processes.

A large class of tests and estimators in many time-series models are
based on sums and weighted sums of underlying observations. Chapter 4
introduces the basic theoretical tools and provides minimal sufficient condi-
tions for asymptotic normality of the weighted sums of a linear process. The
methods of proof include the cumulant method and the method of approx-
imation by m-dependent variables. The methodology presented also pro-
vides techniques for analyzing asymptotic distributions of sums of functions
of long and short memory Gaussian process. The results of this chapter are
useful in deriving asymptotic distributions of various inference procedures
in regression models with dependent errors in Chapters 9 and 12.

Given that the sample X;,---,X, is fully represented by discrete
Fourier transforms (DFTs) w(uy),- -+, w(u, ), computed at Fourier frequen-

2

5

cies ug, -+ ,up, and that the periodogram at frequency u; equals |w(u;)



