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Preface

This book is designed for a beginning or an intermediate graduate course in
probability theory. It is intended for a serious student of probability, whether
a mathematics and/or a statistics major. A working knowledge of real
analysis at the level of Royden, complex analysis at the level of Hille, and
abstract measure theory at the level of Halmos is assumed. For students
who wish to specialize in probability theory it is expected that this course
will be followed by one in stochastic processes and/or one in probability
measures on abstract spaces for research preparation. For others, a course
based on this book will accord adequate preparation.

The objective of this book is to make the basic concepts of probability
theory easily accessible to both students-and research workers in a com-
prehensive manner. We believe that a student of probability theory at

- graduate level should have a comprehensive knowledge of both the measure-
theoretic foundations and the analytical tools of probability theory. This
should include, for example, the axiomatic foundations of probability theory
as developed by Kolmogorov and the analytical tools as developed, amongst
others, by Lévy, Cramér, Feller, and Prokhorov. Some of the existing books
on the subject do not concentrate long enough on the central topics such as
laws of large numbers, the law of the iterated logarithms, infinitely divisible
laws, and the central limit theory, while others do-not treat the analytical
tools in a comprehensive manner. This book is written to overcome not
only these drawbacks but also to meet the requirements set out above.

Some special features of this book are as follows:

1. Thestrong interrelationship between probability theory and mathematical
analysis is emphasized. For example, a detailed discussion of the prop-
erties of characteristic functions and .#, spaces, and a chapter on random
variables taking values in normed linear spaces, are included. We em-
phasize classical as well as modern methods.
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2. Special stress is placed on probability that is-applicable rather than

- probability as analysis. Applications of probability, in particular, to
statistics and analysis are emphasized.

3. Some recent developments in probability theory are included. For
example, a detailed proof of Prokhorov’s theorem and its applications
(Section 3.9) are given. Section 3.8 deals with semigroups of probability
distributions and their infinitesimal generators. In Chapter 7 we prove
the Minlos-Sazonov theorem and derive an analogue of the Lévy-
Khintchine representation of the Fourier transform of an infinitely
divisible probability measure on a Hilbert space. We also discuss in
detail the general central limit problem in a Hilbert space. _

4. Every attempt has been made to make the book self-contained. Only
well-known results from analysis and measure theory have been used.
We have avoided using results by quotation from sources such as mono-
graphs or research papers.

. A large number of examples and remarks elucidate the text.

6. An adequate number of problems at the end of each chapter (subdivided

by sections) supplement the text.

7. Notes and comments at the end of each chapter include references to
sources and to additional reading material.

8. An extensive list of references is included.

N

A few words are in order about the selection of topics and applications.
The choice of topics is somewhat traditional, but the reader will find here
some material that is available only in specialized monographs. The ordering
of the chapters is for ease in presentation. However, the reader need not
follow this order. For example, most of Chapter 6 can easily be understood
after Chapter 3. Similarly parts of Chapter 7 can also be followed after
Chapter 3 has been read. As for the choice of applications, only those are
included for which little or no preparatory work is needed. In view of our
intended audience, applications to statistics and analysis figure prominently
in our selection, whereas applications to number theory, stochastic processes,
and the like are given less attention.

We do not claim any originality in methods of proofs or their presentation.
However, a special attempt has been made to present complete proofs in a
lucid and precise manner. Most of the results that are included in this book
are fairly well known. For this reason we have avoided overburdening the
text with credit references. Rather we have cited, wherever possible, mono-
graphs and books where such references can be found. Similarly we have
referred to only the sources where the results are stated or proved, in the
formulation best suited to our needs. For the organization and presentation
of the material we have relied heavily on the well known works of Logéve,
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Lukacs, and Gnedenko and Kolmogorov. To these authors we express our
indebtedness. :

The numbering of chapters, sections, subsections, theorems, and so forth
is traditional. Each chapter has been subdivided into several sections. Each
section has been further subdivided into subsections wherever necessary.
Definitions, theorems, equations, and so on are numbered consecutively
within each section. Thus equation (i.j.k) stands for the kth equation in
Section j of Chapter i. Section i.j stands for Section j in Chapter i; Section
i.j.k stands for Subsection k of Section j in Chapter i; and so on.

References are given at the end of the book and are denoted by numbers
enclosed in brackets: [ .

The set of lecture notes on which this book is based has been used by
both of us over the last 10 years. The first-named author class-tested a major
portion of the present version during the year 1977-1978.

We are indebted to Professors J. Sethuraman of Florida State University,
A. J. Terzuoli of the Polytechnic Institute of New York, and H. Braun of
Princeton University who read the first draft and made many suggestions.
We are specially grateful to Professors R. J. Tompkmns and C. C. Heyde for
making numerous suggestions. Thanks are also due to D. Borowiak for his
assistance in proofreading.

Kae Lea Main deserves our special thanks for her efficient and error-free
typing. Finally we express our indebtedness to Ms. Beatrice Shube of John
Wilev & Sons for her efficient editorial guidance.

R. G. LAHA
V. K. ROHATGI

Bowling Green, Ohio
January 1979
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CHAPTER 1

Basic Concepts
of Probability Theory

The fundamental concepts o1 prooaoiiity theory have rools in measure
theory. Like any branch of mathematics, probability theory has its own
terminology and its own tools. In this chapter we introduce some of this
terminology and study some basic concepts of probability theory. It is
assumed that the reader has a working knowledge of measure theory at the
level of Halmos [31], and of real analysis at the level of Royden [71]. We
will frequently use results from measure theory and real analysis without
reference to their source. Results which are of particular importance in
probability theory, however, are proved in some detail. These include for
example, Theorems 1.1.2 and 1.1.5.

1.1 PROBABILITY SPACES AND RANDOM VARIABLES

1.1.1 Notation and Probability Terminology

We denote by (2 a nonempty set. The elements of Q will be called points and
be denoted generically by w. The following set-theoretic notation will be used:

Points @

Sets capital letters E, F, G, etc.
Union I WK,
Intersection EnF, (). E,
Complement E*

Difference E—-—F=EnFs¢

Singleton set {w}
Set inclusion E c F (not excluding E = F)
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Cldsses script capital letters o/, %, &, etc.
Inclusion & < % (not excluding & = &)
Belonging to weE Ee¥

Empty set %)

In the following list we give the correspondences between the probability
and measure-theoretic terms which are frequently used:

Sample space Measurable space
Probability Normed measure
Probability space Normed measure space
Elementary event Singleton set

" Event Measurable set
Sure event Whole space Q
Impossible event Empty set @

Almost sure, almost surely (a.s.) Almost everywhere (a.e.)
(with probability 1)

Random variable (Finite-valued numerical)
measurable function
Expectation Integral

We summarize below in probability language some results which are
specializations of corresponding results in measure theory.

1.1.2  Probability Space

Let Q be a nonempty set. Let % be a a-field of subsets of Q, that is, a non-
empty class of subsets of Q which contains Q and is closed under countable
union and complementation.

Let P be a measure defined on & satisfying P(Q) = 1. Then the triple
(Q, &, P)is called a probability space, and P, a probability measure. The set Q
is the sure event, and elements of ¥ are called events. Singleton sets {w} are
called elementary events. The symbol @ denotes the empty set and is known
as the null or impossible event. Unless otherwise stated, the probability space
(Q, &, P) is fixed, and 4, B, C, ..., with or without subscripts, represent
events!

We note that, if A,€ %, n=1,2,..., then A;, (J;=, 4., [ )n=) 4a,
lim inf,._ A,, lim sup,_,, 4,, and lim,_, . A, (if it exists) are events. Also,
the probability measure P is defined on .%, and for all events 4, 4,

P(A) > 0, P( U .4,) — ¥ P(4)(4,s disioint),  P@) = 1.
n=1 a=1
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It follows that
o
P(P)=0, P(4) < P(B) forAc B, (U A,,)

Moreover,

(Ay)-

n[\/]s

1

P(lim inf A,,) < lim inf P(4,) < lim sup P(4,) < P(lim sup A,),

n-+o oo n—oo n—+oo

and, if lim,., ,, 4, exists, then

P(lim A,,) = lim P(A,).

n=*w n=*a

The last result is known as the continuity property of probability measures.

Example 1.1.1. LetQ = {w;:j > 1},and let ¥ be the o-field of all subsets of
Q. Let {p;,j > 1} be any sequence of nennegative real numbers satisfying
Y2, p; = 1. Define P on & by
P(Ey= Y p;, Ee%.
w;ekE
Then P defines a probability measure on (€, %), and (Q, ¥, P)isa probability
space.

Example 1.1.2. LetQ = (0, |]and ¥ = # be the o-field of Borel sets on Q.
Let 1 be the Lebesgue measure on . Then (£, .#, 1) is a probability space.

Definition 1.1.1. Let (2, %, P) be a probability space. A real-valued
function X defined on Q is said to be a random variable if

X YE)={weQ: X(w)eE}le? for all E e 4,

where # is the o-field of Borel sets in R = (— o0, o0); that is, a random
variable X is a measurable transformation of (Q, %, P) into (R, #).

We note that it suffices to require that X ~*(I) € & for all intervals [ in R,
or for all semiclosed intervals I = (a, b], or for all intervals I = (— oo, b],and
so on. Unless otherwise specified, X, Y, ..., with or without subscripts, will
represent random variables. :

We note that a random variable X defined on (©, ., P) induces a measure
Py on Z defined by the relation

Py(E) = P{X"Y(E)} (Ee ).

Clearly Py is a probability measure on % and is called the probability distri-
bution or, simply, the distribution of X. We note that Py is a Lebesgue-
Stieltjes measure on 4.
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Definition 1.1.2. For every x € R set
() Fy(x) = Py(— 00, x] = P{lwe Q: X(w) < x}.

We call Fy = F the distribution function of the random variable X.

In the following we write {X < x} for the event {w € Q: X(w) < x}. We
first prove the following elementary property of a distribution function.

Theorem 1.1.1. The distribution function F of a random variable X is a
nondecreasing, right-continuous function on R which satisfies

F(—0)= lim F(x)=0

x= —-®

and
F(+00) = lim F(x) = 1.

b o ]

Proof. Note that for every xe Rand h > 0
F(x+h — F(x)=P{x< X <x+ h} =0,

so that F is nondecreasing.
Next, let {h,} be a sequence of real numbers such that0 < h, ] 0,asn — oo.
Then, for every n > 1,

F(x+h)—F(x)=P{x< X <x+ h}.
It follows from the continuity property of P that
lim [F(x + h,) — F(x)] =0,

n-*a0

and hence that F is right-continuous.
Finally, for every N > 1 we have

F(N) — F(~N) = P{—N < X < N}.

Taking the limit of both sides as N — co and using the continuity property
once again, we conclude that

F(+x) — F(-x) = 1.
But since 0 < F(x) < 1 for every x € R, it follows that F(—o0) = 0 and
F(+®)=1. =

Corollary. A distribution function F is continuous at x € R if and only if
P{w: X(w) = x} = 0.
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Proof. The proof of the corollary is an immediate consequence of the fact
that :
(1.1.2) ; P{X = x} = F(x) — F(x — 0).

Remark 1.1.1. Let X be a random variable, and let g be a Borel-measurable

function defined on R. Then g(X) is also a random variable whose distribution
is determined by that of X.

We now show that a function F on R with the properties stated in Theorem
1.1.1 determines uniquely a probability measure P on #.

Theorem 1.1.2. Let F be a nondecreasing, right-continuous function
defined on R and satisfying

F(—0)=0 and F(4+00) =1
Then there exists a probability measure P = P on % determined uniquely by
the relation
(1.1.3) Pp(— o0, x] = F(x) for every x € R.

Proof. Let 2 be the class of all bounded left-open, right-closed intervals of
the form (a, b], —00 < a < b < cc. Define a set function P, on 2 by the
relation ‘

Pi(a, b] = F(b) — F(a).

We write P = P and note that 0 < P(E) < 1 for all E € 2. The proof of
Theorem 1.1.2 is based on the following steps.

STEP 1. Let E,e ?,and E, € Z,n = 1, 2, ... be a sequence of disjoint sets
such that E, = E, for every n. We show that

(11.4) S P(E,) < P(E,)
n=1

holds.

Let us first consider the case where the sequence E, consists of only a
finite number of sets,say E,, E,, ..., Ey.SetE, = (a,, b,],0 < n < N. With-
out loss of generality, we may assume that a; < @, < --- < ay. Since the

* E, are disjoint and E, = E, for each n, it follows that

aOSal<b,$az<bZS---Sa~<b~Sbo.
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Then

Z P(En) i Z‘, [F(bn) T F(an)]

N N=X
; [F(b,) — F(a,)] + Z; [F(ay+1) — F(b)]
= F(by) — F(a,)
< P(E,).
Next, let the sequence {E,} be countably infinite, Since

N
Y P(E,) < P(E,) for every N,
n=1

letting N — oo yields (1.1.4).

sTeP 2. Let K, = [ag, bgl, —00 < ay < by < oo, and let ¥, = (a,, b,),
—w<a,<b,<oo,n=12...,N,besuchthat K, = [ J)., V,. Then we
show that

N
(1.1.5) F(bo) — Fla,) < Zl[F(b..) — Fa,)].

Since K, = (J)-, V,, there exists an integer k,, | <k, < N, such that
a, € V. If by € W, then clearly (1.1.5) holds. Otherwise, b, < b,. In this case
there exists an integer k,, 1 < k, < N, such that b, € V,,. If b,, < by, there
exists an integer k,, 1 < k3 < N, such that b;, € V},, and so on. Clearly this
process must terminate after a finite number of steps when we have obtained
a set ¥, _from the sequence {V,} such that b, € ¥, . We may assume, without
loss oi' generahty, that m = N and that K = for 1 < n < N. We have the
set of inequalities

al<a0<b1, a2<b1<b2,4..,aN<bN-l<bN. a~<b0<'b~.
Hence

F(bo) pact F("o) < F(by) — F(a,)

—F(b) F(ao+ Z[F(bm) _Fb)]

N
< ;1[F(bn) Ly F(an)]‘



