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FOREWORD

The Institute for Mathematical Sciences at the National University of
Singapore was established on 1 July 2000. Its mission is to foster math-
ematical research, both fundamental and multidisciplinary, particularly re-
search that links mathematics to other disciplines, to nurture the growth
of mathematical expertise among research scientists, to train talent for re-
search in the mathematical sciences, and to serve as a platform for research
interaction between the science community in Singapore and the wider in-
ternational community.

The Institute organizes thematic programs which last from one month
to six months. The theme or themes of a program will be chosen from areas
at the forefront of current research in the mathematical sciences and their
applications.

Generally, for each program there will be tutorial lectures followed by
workshops at the research level. Notes on these lectures are usually made
available to the participants for their immediate benefit during the pro-
gram. The main objective of the Institute’s Lecture Notes Series is to bring
these lectures to a wider audience. Occasionally, the Series may also in-
clude the proceedings of workshops and expository lectures organized by
the Institute.

The World Scientific Publishing Company has kindly agreed to publish
the Lecture Notes Series. This Volume, “Geometry, Topology and Dynamics
of Character Varieties”, is the twenty-third of this Series. We hope that
through the regular publication of these lecture notes the Institute will
achieve, in part, its objective of promoting research in the mathematical
sciences and their applications.

February 2012 Louis H.Y. Chen
Wing Keung To
Series Editors

vii



PREFACE

This volume is based on a series of expository lectures presented at the
highly successful graduate student summer school which kicked off the pro-
gram Geometry, Topology and Dynamics of Character Varieties held at
the National University of Singapore’s Institute for Mathematical Sciences
in July and August 2010. The theme was the character varieties of repre-
sentations in a Lie group G of a discrete group I', the primary example
being the case in which I' is the fundamental group of a surface and G
is SL(2,R) or SL(2,C). Character varieties lie at the confluence of many
important areas of mathematics including algebraic geometry, hyperbolic
geometry and Teichmiiller theory, Kleinian groups and three-dimensional
topology, dynamical systems and gauge theory. They have rich geometry
and are related to interesting topological objects such as locally homo-
geneous geometric structures on manifolds and moduli spaces arising in
gauge theory. Their study reveals many deep connections between these
fields.

The summer school, which took place over three weeks with about 40
graduate students from over 12 countries participating, featured nine series
of four lectures each, chosen so as to introduce important aspects of the
background to the program. Following highly positive feedback, we felt
it was important to preserve all this great material and enable it to be
shared more widely. All but one of the lecturers were able to contribute, to
which we have added two excellent expository articles based on lectures by
students who attended the program (Koberda and Palesi). We hope that
this resulting volume of edited and refereed articles will serve as a portal
to a vibrant and many faceted area of mathematics.

Aimed at graduate students, much of the material in the volume is
otherwise available only in specialized texts. Following Zhang’s introduction
to basic hyperbolic geometry in the synthetic axiomatic style, Aramayona
and Leininger give an easily accessible introduction to the central topics
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of hyperbolic structures on surfaces and their degenerations via measured
foliations and the Thurston compactification of Teichmiiller space. Koberda
explains the important technique of ping-pong lemmas, with applications
in the context of hyperbolic geometry and mapping class groups of surfaces.

An important and unique feature of the summer school was Yamashita’s
specially designed lecture course which described how to write a program to
draw limit sets and fundamental domains for Kleinian groups. Programming
is done using the software python, and everything is explained from scratch
without assuming any previous computing knowledge. Many people are
interested in how to make the resulting beautiful pictures, and as far as we
know, his is the only published article along these lines.

We then turn from the primary example of hyperbolic geometry to a
more general context. Articles by Parker and Drumm provide introductions
to complex hyperbolic and Lorentzian geometry, respectively. Palesi’s arti-
cle introduces a more general discussion about the representation space of
surfaces groups into SL(2,R) and its connected components, a topic taken
further by Kim in the context of general Lie groups. The final article by
Xia is an introduction to the topic of abelian and non-abelian cohomology
which provides powerful analytical tools for the study of structures on the
representation and character varieties.

The IMS program would not have been possible without contributions
from many people. It was generously funded not only by NUS (from the
IMS program funding as well as ARF grant R-146-000-133-112), but also
aided by a grant from the NSF which enabled a substantial participation
by US-based students and participants, and the Global Center of Excel-
lence (Compview) of the Tokyo Institute of Technology which provided
support for the Japanese contingent. We are grateful to the director of the
IMS, Professor Louis Chen for his unwavering support and tremendous en-
thusiasm for the program, and all the staff at IMS, in particular, Emily,
Claire, Stephen, Jolyn, Nurleen and Agnes for their help in running the
program.

We would also like to thank the other scientific organizers of the
program for their work and input: Javier Aramayona, Craig Hodgson,
Sadayoshi Kojima, Yair Minsky, Makoto Sakuma, Jean-Marc Schlenker,
Yan Loi Wong, Yasushi Yamashita and Ying Zhang. The contributions, of
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Aramayona and Zhang in particular, to the smooth running of the program
were invaluable.

December 2011 William Goldman
University of Maryland, USA

Caroline Series
University of Warwick, UK

Ser Peow Tan
National University of Singapore, Singapore
Editors
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AN INVITATION TO ELEMENTARY HYPERBOLIC
GEOMETRY

Ying Zhang

School of Mathematical Sciences, Soochow University
Suzhou, 215006, China
yzhang@suda.edu.cn

We offer a short invitation to elementary hyperbolic plane geometry. We
first examine the contents of Book I of Euclid’s Elements and obtain
a hyperbolic plane from the Euclidean one by negating Euclid’s paral-
lel postulate and keeping all of his other axioms. Then we explore the
fundamentals of hyperbolic plane geometry, and study the structure of
its isometries. Finally, we obtain certain identities involving the isome-
tries and evaluate them in the upper half-plane model to derive some
trigonometric laws for hyperbolic triangles.

Keywords: Non-Euclidean, hyperbolic plane, isometry, trigonometry

Mathematics Subject Classification 2000: 51M10

Introduction

In this short invitation to elementary hyperbolic geometry we choose to
follow the approach of the discoverers of non-Euclidean geometry. Thus
without giving any account of the history of the discovery of non-Euclidean
geometry, we start by examining the contents of Book I of Euclid’s Elements
and obtain a hyperbolic plane from the Euclidean one by negating Euclid’s
parallel postulate and keeping all of his other axioms. We then explore
the fundamentals of the hyperbolic plane geometry, study the structures of
the isometries of a hyperbolic plane, and finally apply certain identities of
isometries of the hyperbolic plane to derive trigonometric laws for triangles.

We choose this synthetic approach and as far as possible use no analytic
models, because we believe this will provide the reader with more feeling
for the geometry and thus enable him or her to explore the subject him
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or herself. In the more easily accepted analytic approaches, as this author
has experienced, the reader has to rely on the chosen models to obtain any
results and thus loses his or her precious geometric motivation. We hope
that by studying the material presented in these notes, the reader will be
able to develop the geometric ideas he/she has in mind analytically with
no essential difficulties in any preferred model of a hyperbolic plane.

We have to warn the reader that we do not cover the trigonometry in
detail and do not even touch the rich solid hyperbolic geometry. To master
this omitted material, the reader is referred to some advanced textbooks as
briefly discussed at the very end of the notes (in §4.6).

1. Euclid’s Elements, Book I and Neutral Plane Geometry
1.1. A brief review of contents of Elements, Book I

In Book I of Elements, Euclid treated the fundamentals of the Euclidean
plane geometry, including theories of triangles, parallels, and area. Pre-
cisely, Book I consists of 23 definitions, 5 postulates, 5 common notions,
and 48 propositions. The definitions describe certain basic terms, of which
we list only a few, such as point, line (curve), straight line, and sur-
face, and then define some others based on them. The postulates are
fundamental assumptions on the plane geometry while the common no-
tions are commonly accepted assumptions on algebra or scientific rea-
soning. And, after that, the propositions (some are construction prob-
lems), including the famous Pythagorean Theorem (1.47), are presented
in logical order. In what follows our phrasing of the contents of Book I
of Elements is taken from Heath [13] or as appeared in Joyce’s website
http://aleph0.clarku.edu/~djoyce/java/elements/bookI/bookI.html”.

Definitions (listed below are D1-D4 and D23):

D1. A point is that which has no part.

D2. A line is breadthless length.

D3. The ends of a line are points.

D4. A straight line is a line which lies evenly with the points on itself.

D23. (A pair of) parallel straight lines are straight lines which, being in
the same plane and being produced indefinitely in both directions, do not
meet one another in either direction.

Postulates (P1-P5): Let the following be postulated.
P1. To draw a (finite) straight line from any point to any point.
P2. To produce a finite straight line continuously in a straight line.
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P3. To describe a circle with any center and radius.

P4. That all right angles equal one another.

P5. That, if a straight line falling on two straight lines makes the interior
angles on the same side less than two right angles, then the two straight
lines, if produced indefinitely, meet on that side of the straight line on which
are the two interior angles less than the two right angles.

Fig. 1. Euclid’s Postulate 5

Common Notions (CN1-CN5):

CN1. Things which equal the same thing also equal one another.

CN2. If equals are added to equals, then the wholes are equal.

CN3. If equals are subtracted from equals, then the remainders are
equal.

CN4. Things which coincide with one another equal one another.

CN5. The whole is greater than the part.

Propositions (listed below are 1.1-1.32 and 1.47-1.48):

I.1. To construct an equilateral triangle on a given finite straight line.

I.2. To place a straight line equal to a given straight line with one end
at a given point.

[.3. To cut off from the greater of two given unequal straight lines a
straight line equal to the less.

1.4. If two triangles have the two sides equal to two sides respectively,
and have the angles contained by the equal sides equal, then they also
have the base equal to the base, the triangle equal to the triangle, and the
remaining angles equal to the remaining angles respectively, namely those
opposite the equal sides.

L.5. In isosceles triangles the angles at the base equal one another.

L.6. If in a triangle two angles equal one another, then the sides opposite
the equal angles also equal one another.

L.7. Given two straight lines constructed from the ends of a straight
line and meeting in a point, there cannot be constructed from the ends of
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the same straight line, and on the same side of it, two other straight lines
meeting in another point and equal to the former two, namely each equal
to that from the same end.

1.8. If two triangles have the two sides equal to two sides respectively,
and also have the base equal to the base, then they also have the angles
equal which are contained by the equal straight lines.

1.9. To bisect a given rectilinear angle.

1.10. To bisect a given finite straight line.

1.11. To draw a straight line at right angles to a given straight line from
a given point on it.

[.12. To draw a straight line perpendicular to a given infinite straight
line from a given point not on it.

1.13. If a straight line stands on a straight line, then it makes either two
right angles or angles whose sum equals two right angles.

1.14. If with any straight line, and at a point on it, two straight lines
not lying on the same side make the sum of the adjacent angles equal to
two right angles, then the two straight lines are in a straight line with one
another.

1.15. If two straight lines cut one another, then they make the vertical
angles equal to one another.

1.16. In any triangle the exterior angle is greater than either of the
interior and opposite angles.

1.17. In any triangle the sum of any two angles is less than two right
angles.

1.18. In any triangle the angle opposite the greater side is greater.

1.19. In any triangle the side opposite the greater angle is greater.

1.20. In any triangle the sum of any two sides is greater than the re-
maining one.

1.21. If from the ends of one of the sides of a triangle two straight lines
are constructed meeting within the triangle, then the sum of the straight
lines so constructed is less than the sum of the remaining two sides of the
triangle, but the constructed straight lines contain a greater angle than the
angle contained by the remaining two sides.

1.22. To construct a triangle out of three straight lines which equal
three given straight lines: thus it is necessary that the sum of any two of
the straight lines should be greater than the remaining one.

1.23. To construct a rectilinear angle equal to a given rectilinear angle
on a given straight line and at a point on it.

1.24. If two triangles have two sides equal to two sides respectively, but
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have one of the angles contained by the equal straight lines greater than
the other, then they also have the base greater than the base.

[.25. If two triangles have two sides equal to two sides respectively, but
have the base greater than the base, then they also have the one of the
angles contained by the equal straight lines greater than the other.

1.26. If two triangles have two angles equal to two angles respectively,
and one side equal to one side, namely, either the side adjoining the equal
angles, or that opposite one of the equal angles, then the remaining sides
equal the remaining sides and the remaining angle equals the remaining
angle.

1.27. If a straight line falling on two straight lines makes the alternate
angles equal to one another, then the two straight lines are parallel to one
another.

1.28. If a straight line falling on two straight lines makes the exterior
angle equal to the interior and opposite angle on the same side, or, equiv-
alently, the sum of the interior angles on the same side equal to two right
angles, then the two straight lines are parallel to one another.

1.29. A straight line falling on two parallel straight lines makes the al-
ternate angles equal to one another, the exterior angle equal to the interior
and opposite angle, and the sum of the interior angles on the same side
equal to two right angles.

1.30. Straight lines parallel to the same straight line are also parallel to
one another.

1.31. To draw a straight line through a given point parallel to a given
straight line.

1.32. In any triangle, if one of the sides is produced, then the exterior
angle equals the sum of the two interior and opposite angles, and the sum
of the three interior angles of the triangle equals two right angles.

1.47. In right-angled triangles the square on the side opposite the right
angle equals the sum of the squares on the sides containing the right angle.

1.48. If in a triangle the square on one of the sides equals the sum of
the squares on the remaining two sides, then the angle contained by the
remaining two sides is right.

1.2. A useful lemma

The following useful lemma, called the Bow Tie Lemma by some authors,
is an easy consequence of the SAS congruence criterion.

Lemma 1.1. Given AABC, let M be the midpoint of side BC. Produce
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AM to D so that |AM| =|MD)|. Then AACM = ADBM.

C D

A B
Fig. 2. Figure for Lemma 1.1

Euclid used Lemma 1.1 in Elements to give a clean proof of Proposition
1.16, an important proposition in Book I. (We leave it to the reader to try
to find a not-so-clean but easier proof for Proposition 1.16.)

1.3. A figure-free proof of Proposition 1.7

Proposition 1.7 is a stronger version of 1.8, the SSS congruence criterion.
The proof that Euclid gave relies, however, on how the figure is drawn, and
omits a case. Here we present a complete, figure-free proof.

Let AABC and AABD be two triangles such that C and D are distinct
points on the same side of the straight line AB, and such that |[AC| = |AD|
and |BC| = |BD|. We proceed to deriving a contradiction. Let M be the
midpoint of CD. Then M lies on the same side of AB as C and D. By
Propositions 1.5 and 1.4, we conclude that straight lines AM and BM are
both perpendicular to CD and therefore coincide. Hence M lies on straight
line AB, which is absurd. This proves Proposition 1.7.

1.4. More notes on Elements, Book I

In our discussion of plane geometry, we do not pursue a pure axiomatic
way and assume that everything under discussion occurs in the same plane
which is, topologically, the usual plane.

Taken as granted, Euclid assumed that each finite straight line has its
definite magnitude, length, which is additive when two finite straight lines
lying in the same straight line are juxtaposed. He also assumed that an
angle has its definite measure which is also additive when two angles with
the same vertex are juxtaposed.

For the angles, Euclid further required in Postulate 4 that the full round
angles (four right angles) at all points in the plane equal one another.
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The definition, D4, of straight line is a vague description since one can-
not conclude a line (curve) be a straight line merely by this definition.

Postulate 1, according to the way Euclid used it, should be interpreted
as: Given two distinct points in the plane, there exists in the plane one
and only one straight line which connects them. Therefore, if two distinct
straight lines in the plane intersect, they intersect in only one point. Con-
sequently, we conclude that each interior angle of a triangle is less than
two right angles. Furthermore, as a consequence of Postulate 1 and Propo-
sition 1.4, we conclude that the perpendicular straight line drawn from a
given point to a given straight line is unique (note that the existence of the
perpendicular is guaranteed by Propositions 1.14 and 1.15).

We notice that Euclid’s system of axioms for the plane geometry is
incomplete. For example, Proposition 1.4, the SAS congruence criterion,
should be regarded as an axiom instead of a theorem; in fact, Euclid’s
proof for 1.4 is not satisfactory. In so doing, Proposition 1.5 follows as an
easy consequence of (axiom) I.4. One also needs to include a continuity
axiom to confirm that if a straight line enters the interior of a triangle then
it will leave the region when the straight line is indefinitely produced in
that direction. It is well known that a complete system of axioms for the
Euclidean plane geometry was given by Hilbert in [14].

Proposition 1.20 is the so-called triangle inequality.

Proposition 1.21 can be rewritten as: If point D lies within triangle
ABC, then |AD|+ |DB| < |AC|+ |CB| and LADB > £ACB.

Proposition 1.26 establishes the ASA and AAS congruence criteria.

Proposition 1.27 gives, without making use of Postulate 5 in its proof,
parallel straight lines: If one straight line falling on two straight lines makes
the alternate interior angles equal to one another, then the two straight lines
are parallel. This can be easily proved using the SAS congruence criterion
and the uniqueness of intersection points of two straight lines. Hence 1.27
can be put just after 1.4 if one wishes.

A careful reader will notice that Euclid did not use his Postulate 5 until
in the proof of Proposition 1.29, the Euclidean Parallel Theorem, which
asserts that whenever one straight line falls on two parallel straight lines,
the alternate angles equal one another. In other words, each of the first
28 propositions in Elements, Book I can be proved using only the axioms
(including the hidden ones to be added in) of the plane geometry other
than Euclid’s Postulate 5. This leads to the term “neutral plane geometry”
which we shall discuss shortly.

Of the very last two propositions in Book I, 1.47 is the famous
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Pythagorean Theorem, and 1.48 is the converse of 1.47. The proofs of them,
of course, essentially make use of Postulate 5, at least in the way Euclid
had proved them.

1.5. Playfair’s axiom

One would wonder why Euclid made his Postulate 5 so complicated a state-
ment compared with the other four, and, in particular, Euclid even did not
mention parallels in it. This is partly because the ancient Greek philosophy
avoids any unnecessary use of infinity which lies in the nature of parallels.
For the same reason Euclid never used the term “infinite straight line”.
On the other hand, with the presence of all axioms of the Euclidean
plane geometry other than Euclid’s Postulate 5, it is easy to show that
Postulate 5 is equivalent to the so-called Playfair’s Axiom below.

Playfair’s axiom. Through a given point P not on a given straight line
l, there passes at most one straight line which is parallel to [.

Since, by 1.27, there exists at least one parallel, the phrase “at most
one” in Playfair’s Axiom can be replaced, if one wishes, by “exactly one”.

1.6. Neutral plane geometry

By neutral geometry, for which J. Bolyai used the term “absolute geom-
etry”, we mean the geometry obtained from the Euclidean geometry by
dropping just Euclid’s Postulate 5.

In particular, all the first 28 propositions in Euclid’s Elements, Book I
are indeed theorems (possibly with 1.4 chosen as an axiom) of neutral plane
geometry, since their proofs make no use of Postulate 5.

1.7. Angle-sums of triangles and Legendre’s Theorems

We have seen that, with the presence of all other axioms for the plane
geometry, Euclid’s Postulate 5 is equivalent to Playfair’s Axiom. It is not
hard to see that they are also equivalent to the Euclidean Angle-Sum Axiom
(Proposition 1.32).

Euclidean angle-sum axiom. The sum of the interior angles of every
triangle equals two right angles.

Regarding angle-sums of triangles in a neutral plane, we have the well-
known theorems of Saccheri and Legendre.
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Theorem 1.2 (Legendre’s First Theorem). In a neutral plane the sum
of the angles of a triangle is less than or equal to two right angles.

Proof. Suppose on the contrary that there exists a triangle, AABC, with
angle-sum greater than two right angles. With no loss of generality, we may
assume that the angle at A is the smallest angle of AABC'. Then by Lemma
1.1, we obtain a triangle AABD with the same angle-sum as AABC, such
that the smallest angle of AABD is at most half the smallest angle of
AABC. By Archimedes’s Axiom, after a finite number of steps one arrives
at a triangle with the same angle-sum as AABC and with smallest angle
less than the excess of its angle-sum over two right angles. Then this triangle
has sum of certain two angles greater than two right angles, contradicting
Proposition 1.17. This proves Theorem 1.7. O

By virtue of Legendre’s First Theorem, we may define the defect of
a triangle in a neutral plane to be the deficiency of its angle-sum to two
right angles. Similarly, we define the defect of a (simple) quadrilateral in a
neutral plane to be the deficiency of its angle-sum to four right angles.

Definition 1.3. The defect 6(AABC) of triangle ABC equals two right
angles minus the sum of the angles of AABC and is therefore nonnegative.
Similarly, the defect §(ABCD) of (simple) quadrilateral ABC'D equals
four right angles minus the sum of the interior angles of HABCD and is
also nonnegative.

The defect so defined is additive under subdivision of a triangle or
quadrilateral into smaller triangles and quadrilaterals. Below we list two
simple cases.

Proposition 1.4. In triangle ABC let D be a point within side BC. Then
0(AABC) = §(AABD) + §(ANADC).

Proposition 1.5. If quadrilateral ABCD is obtained as the union of tri-
angles ABC and ACD which share no common interior points, then

8(ABCD) = §(AABC) + §(AACD).

The following theorem establishes the universality of the Euclidean
Angle-Sum Axiom, namely, if the axiom is satisfied by one triangle in the
plane then it is satisfied by every triangle.

Theorem 1.6 (Legendre’s Second Theorem). In a neutral plane if
one triangle has angle-sum equal to two right angles, then so does every
triangle.



