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Preface

In recent years there has been a growing interest in the need for sensor fusion to solve
problems in control and planning for robotic systems. The application of such systems would
range from assembly tasks in industrial automation to material handling in hazardous
environments and servicing tasks in space. Within the framework of an cvent-driven
approach, robotics has found new applications in automation, such as robot-assisted surgery
and microfabrication, that pose new challenges to control, automation, and manufacturing
communities.

To meet such challenges, it is important to develop planning and control systems that can
integrate various types of sensory information and human knowledge in order to carry out
tasks cfficiently with or without the need for human intervention. The structure of a sensing,
planning, and control system and the computer architecture should be designed for a large
class of tasks rather than for a specific task. User-friendliness of the interface is essential for
human operators who pass their knowledge and expertise to the control system before and
during task execution. Finally, robustness and adaptability of the system are essential.

The system we propose should be able to perform in its environment on the basis of prior
knowledge and real-time sensory information. We introduce a new task-oriented approach
to sensing, planning, and control. As a specific example of this approach, we discuss an
event-based method for system design. In order to introduce a specific control objective, we
introduce the problem of combining task planning and three-dimensional modeling in the
execution of remote operations. Typical remote systems arce teleoperated and provide work
efficiencies that are on the order of 10 times slower than what is directly achievable by
humans. Consequently, the effective integration of automation into teleoperated remote
systems offers the potential to improve their work efficiency.

In the realm of autonomous control, we introduce visually guided control systems and
study the role of computer vision in autonomously guiding a robot system. As a specific
example, we study problems pertaining to a manufacturing work cell. We conclude with a
discussion of the role of modularity and sensor integration in a number of problems involving
robotic and telerobotic control systems.

Portions of this book are an outgrowth of two workshops in two international conferences
organized by the editors of this book. The first one, “Sensor-Referenced Control and
*Planning: Theory and Applications,” was held at the IEEE International Conference on
Decision and Control, New Orleans, 1995 and the second one, “Event-Driven Sensing,
Planning and Control of a Robotic System: An Integrated Approach,” was held at the
IEEE/RSJ International Conference on Intelligent Robots and Systems. Osaka, Japan, 1996.
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In summary, we believe that the sensor-guided planning and control problems introduced

in this book involve state-of-the-art knowledge in the field of sensor-guided automation and
robotics.
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CHAPTER 1
NG

Sensor-Based Planning and Control
for Robotic Systems: An Event-Based
Approach

NING XI
Department of Electrical and Computer Engineering, Michigan State University, East Lansing, Michigan

TZYH-JONG TARN

Department of Systems Science and Mathematics, Washington University, St. Louis, Missouri

1 INTRODUCTION

1.1  Motivation

There is growing interest in the development of intelligent robotic systems. The applications
of such systems range from assembly tasks in industrial automation to material handling in
hazardous environments and servicing tasks in space.

The intelligence of a robotic systems can be characterized by three functional abilities.
First, the robotic system should be controlled directly at the task level; that is, it should take
task-level commands directly, without any planning type decomposition to joint-level
commands. Second, the control systems of robots should be designed for a large class of tasks
rather than for a specific task. In this respect, the design of the control system can be called
task independent. Finally, the robotic system should be able to handle some unexpected or
uncertain events.

Traditionally, robots were designed in such a way that action planning and the controller
were treated as separate issues. Robotic system designers concentrated on the controller
design, and the robotic action planning was largely left as a task for the robot users. To some
extent, this is understandable, because action planning is heavily dependent on the task and
Jask environment.

The split between robot controller design and robot action planning, however, becomes a
real issue, because the action planner and a given control system usually have two different
reference bases. Normally, the action planner, a human operator or an automatic planner.
thinks and plans in terms of events. That is, the planner’s normal reference base is a set of

2



4 CHAPTER 1 / SENSOR-BASED PLANNING AND CONTROL FOR ROBOTIC SYSTEMS

events. On the other hand, when it comes to the execution of planned actions, the usual
reference frame for existing robot control systems is a time-based or clocked trajectory,
typically a polynomial representation or decomposition of joint space or task space motions
with time as a driver or independent variable. Eventually. this clocked trajectory representa-
tion can be combined with some expected or desired sensed events at the end of the
trajectory. However, the main motion or action reference base of existing industrial robot
control systems is time.

The two different reference bases for robot action planning and robot action execution or
control (events versus time) cause unwanted complications and rc;!rescnt a bottleneck for
creating intelligent robot control and intelligent robotic workstations. Intelligent robot
control depends to a large extent on the capability of the robotic system to acquire, process,
and utilize scnsory information in order to plan and exccute actions in the presence of various
changing or uncertain events in the robot’s work environment. Note that sensed events in a
robotic work environment do not appear on a precise time scale. Hence, in reality, motion
trajectorics from start to -destination cannot be planned on the basis of time alone. Instead,
the executable representation of robot motion or action plans should be referenced to other
variables to which sensed cvents are normally related. This would make the plan represen-
tation for control exccution compatible with the normal reference base of the applied sensors.

The main motivation of this thesis work is to take a step toward intelligent robotic systems
through the combination of event-based motion planning and nonlincar feedback control.

1.2 Review of Previous Work

There exists voluminous literature on the subject of motion planning. Motion planning
consists of two basic problems, path planning and trajectory planning. Latombe [1] and
Hwang and Ahuja [2] give exceellent surveys and pertinent references in this arca. Basically,
there are two major approaches. One is based on the conliguration space ideas proposed by
Lozano-Perez and Wesley [3]. In order to use the configuration space approach, complete
knowledge of environment is required, so the most useful results with this approach arc for
off-line path planning. The other approach uses a potential field method pioneered by Khatib
[4]. It can be applied to real-time motion planning. However, to get the potential field of an
environment again requires complete knowledge of the robot work space. Therefore, it is very
difficult to apply this approach to a changing environment. The issues of motion planning in
a dynamic environment are discussed by Fujimura [5]. However, most of the results were
obtained under very strict assumptions, such as “the robot velocity is greater than all obstacle
velocities,” and they are valid only for a two-dimensional work space.
The common limitations of the existing motion planning schemes are twofold:

1. The planned motions are described as a function of time.
2. Complete knowledge of the work environment is assumed.

These limitations make it impossible to modify or adjust a motion plan during execution on
the basis of sensory or other on-line information. Therefore, these schemes cannot accommo-
date a dynamic environment consisting of not sharply defined or unexpected events, such as
the appearance of an obstacle. Of course, if some kind of logic function is incorporated in
the time-based plan, it may be able to respond to some unexpected events. However, because
of the very nature of time-based plans, complete replanning of the motion after a change in

the environment or occurrence of an unexpected obstacle is needed in order to reach the final
goal.



