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Preface

The volume that you have before you is the result of a growing realization that
fluctuations in nonequilibrium systems play a much more important role than was
first believed.! It has become clear that in nonequilibrium systems noise plays an
active, one might even say a creative, role in processes involving self-organization,
pattern formation, and coherence, as well as in biological information processing,
energy transduction, and functionality. Now is not the time for a comprehensive
summary of these new ideas, and I am certainly not the person to attempt such a
thing. Rather, this short introductory essay (and the book as a whole) is an attempt
to describe where we are at present and how the viewpoint that has evolved in the
last decade or so differs from those of past decades.

Fluctuations arise either because of the coupling of a particular system to an ex-
ternal unknown or “‘unknowable” system or because the particular description we
are using is only a coarse-grained description which on some level is an approxima-
tion. We describe the unpredictable and random deviations from our deterministic
equations of motion as noise or fluctuations. A nonequilibrium system is one in
which there is a net flow of energy.

There are, as I see it, four basic levels of sophistication, or paradigms, con-
cerning fluctuations in nature. At the lowest level of sophistication, there is an
implicit assumption that noise is negligible: the deterministic paradigm. This is
the assumption that is always made whenever one studies deterministic models of
natural processes.

A great deal of progress has been made in the study of deterministic dynamics
systems, and in our own time the study of nonlinear dynamics and chaos has
radically transformed the way we look at such systems. Twenty years ago, scientists
found it hard to believe that deterministic systems could exhibit low-dimensional
chaotic behavior that was indistinguishable from random motion. Today it seems
that these ideas often so dominate the intellectual climate that many scientists
have a hard time believing there is any other type of randomness. It is currently
quite popular when one is faced with a system that exhibits unpredictable behavior
to apply tools appropriate to the analysis of chaotic deterministic systems, even
when these systems are often demonstrably random at a fundamental level. Such
an approach is even less valid now that it is beginning to be understood that the
addition of even small amounts of noise to a nonlinear dynamical system can alter
its statistical behavior in a fundamental way—a change that has nothing to do with
the “sensitive dependence on initial conditions” in chaotic systems.

I'The title of this book is a homage to E.O. Wilson’s integrative work, Sociobiology: The
New Synthesis.



vi Preface

The use of deterministic systems as models of nature depends on the implicit
assumption that nonlinear, nonequilibrium systems can be separated into a de-
terministic part that contains the essence, and a random part that can be thrown
away. Often this viewpoint is very successful. However, just as it is not possible
to separate nonlinear dynamical systems into simple parts that can be understood
separately, it is not always possible to separate the deterministic element from
the stochastic element in systems subject to fluctuations. Since randomness enters
into the fundamental processes that make up many systems in nature, it is probably
impossible to understand the vast majority of these processes, even qualitatively,
without explicitly incorporating this randomness into our models.

On the next higher level, noise is often regarded as a source of pure disorder:
the equilibrium paradigm. This is the sometimes misleading lesson of equilibrium
statistical mechanics. In this picture, noise is included, but still a deterministic
dynamics controls everything. The noise merely provides for fluctuation about the
deterministic, stable limit sets, disrupting orderly or coherent behaviors as it is
increased. Many researchers organize their understanding of a particular complex
system around such pictures without any clear understanding of their validity (and
sometimes even without conscious awareness).

On a still more sophisticated level is the concept of “order through fluctuations,”
put forward by Prigogine and others, according to which the amplification of
fluctuations near an instability leads to a more ordered macroscopic state. At the risk
of oversimplification, I will call this idea the passive noise paradigm, in that only
the transitions to certain ordered macroscopic states and not the states themselves
are influenced by the fluctuations. In using this paradigm, one often assumes that
the probability that a system will be found in one of a number of possible ordered
states after the transition can be determined from macroscopic criteria, without
reference to the detailed kinetics.

While the passive noise paradigm often applies to systems composed of a great
number of parts, the accompanying assumption is in general not valid (see chapter
1). In systems where the internal fluctuations are large, or where there are external
fluctuations, neither the paradigm nor the assumption applies; however, this is the
category into which many important nonequilibrium systems in nature fall.

Finally, there is the center around which much of this book is focused, which
I will call the active noise paradigm. In general, even when the fluctuations are
small, the probability of a macroscopic state depends on the explicit details of
the global kinetics and cannot be determined from the macroscopic state alone.
In addition, if the fluctuations are macroscopically large, as is the case in many
complex systems, the qualitative structure of the macroscopic states, as well as their
relative probabilities, will also depend on the global kinetics. In simple terms,
this means that a knowledge of the global kinetics is necessary to understand
nonequilibrium systems, even near the stable points.

In such cases, one cannot eliminate the fluctuations from consideration because
they also contain important qualitative information about the behavior of the sys-
tem. Such systems cannot be described by deterministic or passive noise because
there are no macroscopic thermodynamic variables capable of describing the sys-
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tem. Put another way, important nonequilibrium effects are inextricably mixed in
both the macroscopic net forces and the fluctuating forces.

The cases to which active noise applies are to be contrasted strongly with those
described by passive noise. In fact, such cases represent an ever growing, and at
this point definitive, body of evidence against the general applicability of the ideas
of the Prigogine school. Complex is complex, and there are no magic prescriptions,
as Rolf Landauer points out in the first chapter. If it is true that many of our present
intuitive notions are not entirely valid ways of understanding nature, we may need
to radically reappraise the role that noise plays in the behavior of such systems.
This book is an attempt to begin such a reappraisal.

A word needs to be said about the topics represented in this book. It goes without
saying that they represent my own unique and perhaps warped view, along with
the views of the editors of this series. I have chosen to diminish the representation
of important subjects (from the pool of submitted papers) such as self-organized
criticality and stochastic resonance because entire conferences are now devoted to
these subjects.

It is my main goal in this book to illustrate clearly the wide intellectual scope of
the subjectrather than attempt to subsume all under one or another all-encompassing
rubric. I also wanted to show that a great variety of researchers, from theoretical
cosmologists to experimental biologists, are contributing to the subject. If some of
the chapters in this book are a bit speculative, or a bit outside the strict epicenter
of our subject, so be it. The generation of new ideas is vital for the health of any
subject, for without them we slip into the stagnant waters.

Many people have contributed to the publication of this volume. It has been a
long road but, judging by the final result, I think it has been worth it. Thanks are
due to the powers that be at CNLS and the Theoretical Division at the Los Alamos
National Laboratory for providing funds and experience for the original workshop
at Los Alamos in 1993. In particular, I thank Alan Bishop, Don Cohen, Gary
Doolen, Mac Hyman, and Alan Lapedes. The Santa Fe Institute provided some
additional financial support for the meeting. Without the able organizational skills
and experience of Barbara Rhodes, chaos would have reigned at the conference.
Katja Lindenberg made it possible for this volume to be published as part of the
INLS series. I would particularly like to thank Tracy Lopez and Elizabeth Henry
for helping me with the manuscript in their spare time. Without them, I would
still be hunting and pecking my way through the papers—which reminds me to
thank those authors who turned in their contributions in the requested form and
didn’t make us retype the whole thing. Lastly, I acknowledge the patience and
professionalism of the people at Springer-Verlag.

James Franck Institute Mark Millonas
August 1995
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