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Preface

A chemist, faced with the problem of determining the mechanism of a chemical
reaction, tries to identify a set of reactions that will account for the observed
behavior: Ideally, a small set of known reactions should describe in great detail
exactly what takes place at each stage of a chemical transformation. The fact
that many reactions proceed in a stepwise fashion can most convincingly be
demonstrated if intermediate species can be isolated and shown to proceed
to the same products under otherwise identical reaction conditions. An in-
termediate is the reaction product of each of these steps, except for the last
one that forms the final product. Some intermediates are stable compounds in
their own right; some others, however, are so reactive that their isolation is not
possible.

Occasionally, evidence for the existence of short-lived intermediates may
be obtained, in particular by spectroscopic observation. The latter may al-
low a direct observation or an indirect inference from unusual phenomena
occurring in the reaction products during in situ investigations of their cor-
responding chemical reactions. In NMR spectroscopy, for example, transient
emission and enhanced absorption lines may be observed, and one is inclined
to believe that there is a universal and unambiguous reason for their appear-
ance. This is not necessarily the case, however, since this seemingly identical
phenomenon may have a strikingly different origin: During free radical reac-
tions, a phenomenon called chemically induced dynamic nuclear polarization
(CIDNP) may give rise to virtually the same effect as occasionally observed
during homogeneous (and possibly even heterogeneous) hydrogenations: The
latter phenomenon, called parahydrogen-induced polarization (PHIP), has
a completely different physical basis. It was first noticed twenty years later
than CIDNP and occurs if there is an imbalance of the two spin isomers of
symmetric molecules such as dihydrogen when hydrogenating unsaturated
compounds using appropriate catalysts. These two effects, if not differentiated
properly, can cause misinterpretations of reaction mechanisms, as occurred
initially when their different origins had not yet been understood appropri-
ately.

In this volume, both phenomena, CIDNP and PHIP, will be described and
typical applications outlined. Apart from providing interesting insights into
catalytic and free radical reaction mechanisms, these examples of chemical
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reaction-assisted nuclear polarization together with their associated signal
and sensitivity enhancement of nuclear magnetic resonance are not only of
interest in chemistry, but are also rapidly gaining significance in medicine and
biochemistry as a potential means to boost the sensitivity of magnetic res-
onance imaging (MRI). “Hyperpolarizing” '*C-nuclei for example, has been
demonstrated to provide access to fast angiography. Likewise, following the
distribution and metabolism of !3C-hyperpolarized compounds might pro-
vide an alternative approach to radioactively labeled targets, augmenting or
replacing imaging methods of nuclear medicine, such as positron emission
tomography (PET). When superimposed with 'H-MRI data, for example, the
corresponding resolution of this approach may exceed that of conventional
PET studies, even though at present the sensitivity of PET still substantially
outshines that of MRI.

Additional chapters dealing with special boundary conditions such as ionic
liquids, supercritical solvents, and biocatalysis are also highlighted and aug-
ment this account of in situ NMR methods in catalysis. The authors of these
chapters were associated with the University of Bonn in one form or another
early on in their careers.

University of Bonn Joachim Bargon
March 2007 Lars T. Kuhn
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Abstract In the past 15 years, ionic liquids have become an alternative reaction medium
for organic transformations, especially for transition metal catalysis. Their unique prop-
erties make them ideal solvents for “green” industrial processes: they are polar, thus
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exhibiting high solubility for a large variety of substrates and catalysts, they are immis-
cible with many organic solvents, and they do not evaporate in high vacuum. Many of
their physicochemical properties are changed substantially by variation of the cation and
the anion; thus, they are “tunable” to the desired reaction. This review focuses on the
general concepts that are applicable to ionic liquids as reaction media. This knowledge
is intended to enable the reader to use ionic liquids advantageously for their chemistry.
In the second part, some recent examples of successful ionic liquid solvent chemistry are
pointed out and discussed in more detail.

Keywords Biphasic catalysis - Green chemistry - Ionic liquids - Transition metal catalysis

Abbreviations

bdmim 1-Butyl-2,3-dimethylimidazolium
bmim  1-Butyl-3-methylimidazolium
bmpy  1-Butyl-4-methylpyridinium
BTA Bis(trifluromethylsulfonyl)amide
Ciomim 1-Decyl-3-methylimidazolium
emim  1-Ethyl-3-methylimidazolium

IL Ionic liquid

RTIL Room-temperature ionic liquid
scCO,  Supercritical carbon dioxide

1
Introduction

Since the beginning of the 1990s, chemistry has rapidly started to evolve
towards more and more environmentally benign processes for synthetic ap-
plications. Nowadays, “green chemistry” [1] is an important keyword in
chemical research. Analysis of the factors that have the strongest influence on
environmental issues in a chemical process frequently comes down to the in-
fluence of the solvents: heating and cooling of the reaction mixture consume
energy, solubility problems reduce the choice of solvents and the efficiency
of processes, the toxicity of solvent vapours are of concern, recycling of toxic
or expensive catalysts is often difficult, etc. Therefore, many attempts have
been made to substitute classical organic solvents with novel reaction media,
tailor-made for the specific task they are needed for. Among the more fre-
quent examples are perfluorinated solvents [2], supercritical carbon dioxide
(scCO3) [3], and, of course, ionic liquids (ILs).

The field of ILs as reaction media in organic synthesis has evolved rapidly
in the last 15 years—Fig. 1 shows the number of publications with the keyword
“ionic liquids” as a function of the publication year. Consequently, there are
numerous reviews in the literature already, giving a comprehensive overview
about the topic as well as focusing on certain specialities [4-11]. In 2003, the
first comprehensive book, lonic liquids in synthesis [12], was published, which
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contains the state of the art when it comes down to ILs. Therefore, there is no
urgent need for another comprehensive review at the present date. This article
will, although giving a general overview about the topic, focus on recent de-
velopments of the last 5 years and on certain specific issues in transition metal
catalysis that the author perceives as especially important and interesting to the
public. The goal is to give the reader a “feeling” for what is possible and what
we can expect from IL chemistry in the near future.

2
A Short History of lonic Liquids

The “modern history” of ILs as reaction media for homogeneous transition
metal catalysis really started in 1990, when Chauvin et al. [13] developed
weakly acidic chloroaluminate melts for dimerisation and polymerisation re-
actions. Shortly afterwards, in 1992, Wilkes and Zaworotko [14] developed
a totally new class of IL solvents with tetrafluoroborate and hexafluorophos-
phate anions. These melts were stable towards hydrolysis and showed a high
tolerance towards molecules with reactive functional groups. From that time
on, room-temperature ILs (RTILs) were available as general reaction media
for synthetic chemistry.

Of course, organic salts that were liquid at room temperature were no
invention of the 1990s. In fact, the very first IL (although this term was in-
troduced much later) was described in 1914 [15]: ethylammonium nitrate
[EtNH3]NO3, exhibiting a melting point of just 12 °C. In the years starting
from 1948, RTILs were mainly used as a medium for electrochemical applica-
tions, until in the mid-1980s Seddon and Hussey started using chloroalumi-
nate melts as media for organic synthesis [16].
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3
Classification of lonic Liquids

What is an IL? If we want to classify these novel reaction media, we first have
to define what is to be called an IL.

An IL is a (partially) organic salt that is liquid at room temperature or re-
action temperature (RTILs versus ILs). As Welton [9] has pointed out, there
is nothing special about room temperature apart from the fact that this is
the temperature that rooms happen to be at, so this definition is only of
limited use—especially since many reactions are run at elevated tempera-
tures. Wasserscheid and Keim [8] have proposed calling an organic salt “IL”
if it is liquid below 100 °C, and this is indeed now one of the most widely ac-
cepted definitions. Where liquidity at room temperature is the key feature, the
term RTIL has found widespread use in the chemical community.

In contrast to what we would call “molten salts”, a term that is always
associated with high melting points and a quite corrosive medium, ILs are
low-melting, quite unreactive, non-corrosive, and therefore suitable as reac-
tion media (i.e., solvents).

The classification of ILs can, of course, be based on any of their physic-
ochemical properties, such as melting point, liquidus range, viscosity,
acidity/basidity, and density. These properties will be the topic of the next
section. In practical terms, the classification of ILs is normally based on their
chemical structure, i.e., on the composition of their cations in combination
with their anions.

Most ILs consist of a cation that bears a quarternary ammonium or phos-
phonium centre (Scheme 1), although systems based on arsonium, antimo-
nium, sulfonium, etc. have also been described. This quarternary centre is
normally substituted in an unsymmetric fashion, i.e., at least one of the
substituents differs from all the others. This reduction of symmetry is ne-
cessary to prevent the salt from crystallising easily, widening the liquidus

cations anions

o) O halide ©

TN

R/N@N\RI C:;) 2
1

R Q S

imidazolium pyridinium By NO3

R R PFS AICIP
RN RPL

R R R R 5 -

ammonium phosphonium CFsS03 Al

Scheme 1 Commonly used cations and anions that combine to form ionic liquids
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range. In the case of simple ammonium and phosphonium salts, for example,
this can be achieved by having three identical and one different substituent
on the quarternary centre. Nowadays, even more common are cations based
on unsymmetrically substituted imidazolium, pyridinium or pyrrolidinium
moieties.

Virtually every imaginable anion can be used as the counterion—every
one of these showing various advantages and disadvantages. In the beginning
of IL solvent chemistry, mixed anions of the chloroaluminate type, i.e., mix-
tures of Cl~ and AICl3, were very common, but since their properties change
with composition [8, 9] and since they are not stable towards hydrolysis, these
are only of limited use for transition metal catalysis and therefore beyond
the scope of this review. Among the most common anions that are covered
here are the halides, triflate, PFs~, BF4~, and Tf,N~ (sometimes also called
bistriflamide or bis(trifluoromethylsulfonyl)imide (BTA).!

Since the names of commonly used ILs can be quite long and very un-
handy, a shortened nomenclature has become widely accepted in the IL
community. Thus, 1-ethyl-3-methylimidazolium bromide becomes [emim|Br,
1-decyl-3-methylimidazolium tetrafluoroborate becomes [C;omim|BFy, 1-bu-
tyl-4-methylpyridinium bis-(trifluromethylsulfonyl)amide becomes [bmpy]
Tf,N or [bmpy]BTA and so on. If unsure, please refer to the list of abbrevi-
ations at the beginning of this review.

4
Properties of lonic Liquids

41
General Properties

The most prominent property of all ILs is the fact that they do not have any
measurable vapour pressure—obviously so, since they are salts and therefore
are completely composed of cations and anions. (Recently, various reports
of distillable ILs have appeared in the literature, e.g., [17]. At the present
state, I leave it to the reader to make up his or her own mind about this
topic.) This fact gives rise to one of the major advantages of using ILs in
synthesis and their label of being “green”: no vapour pressure means no
volatile solvent and no toxic solvent vapours. Additionally, the product of
a reaction run in an IL can be obtained by simply distilling it off the solvent
while the catalyst stays “immobilised” in the ionic phase—the same holds

! There is an ongoing disagreement in the chemical literature about the question whether the Tf,N~
anion is to be called an imide or an amide. From an inorganic point of view (and this anion is
surely inorganic), salts of the general formula M*NR; are amides, M,*NR salts are imides and
M;*N salts are nitrides. It seems therefore quite obvious to the author that Tf;N~ has got to be
bis(trifluoromethylsulfonyl)amide



