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Preface

The central role of process modeling in all aspects of process design and opera-
tion is now well recognized. Although most early models were steady state, more
recently the emphasis has been on dynamic models that can be used for studying
transient process behavior. Moreover, there is an increasing trend toward “high-
fidelity” models, which can accurately predict the trajectories of the key variables
that affect the process performance, safety, and economics. This demand for sub-
stantially higher model accuracy can often be traced to the need for extracting fur-
ther gains in profitability out of processes that have already undergone incremental
improvement over several decades. In other cases, it arises from the strict environ-
mental and safety constraints and product specifications under which many pro-
cesses currently operate [1].

Process modeling has always been an important component of process design,
from the conceptual synthesis of the process flowsheet to the detailed design of spe-
cialized processing equipment such as advanced reaction and separation devices,
and the design of their control systems. Recent years have witnessed the model-
based approach being extended to the design of complex products, such as bat-
teries, fuel cells, biomedical, biochemical, drug delivery systems, which can them-
selves be viewed as miniature plants produced in very large numbers. Inevitably,
the modeling technology needed to fulfill the demands posed by such a diverse
range of applications is very different from the standard steady-state flowsheeting
packages that served the process industries so well in the past [2].

Volume 7 of this book series has attempted a review of some of the current trends
in process modeling and its practical application during the past few years. It fo-
cuses on modeling frameworks for complex systems including chemical, biochem-
ical, bio-processing, biological, and energy systems.

In Chapter 1, Mark Matzopoulos from Process Systems Enterprise Ltd summa-
rizes his long experience in the area of process modeling. He presents a model-
based engineering approach to the construction and application of detailed dy-
namic process models. He first summarizes the key concepts and consideration
to be taken into account when building first principle of the dynamic modeling.
Then he introduces a model-based engineering (MBE) approach, which involves en-
gineering activities with the assistance of a mathematical model of the process un-
der investigation. A step-by-step approach is nicely described for the construction
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of high-fidelity predictive models including estimation of model parameters from
data, analysis of the experimental data, and design of experiments, if necessary. The
applicability of the overall modeling approach is illustrated in a multitubular reac-
tor design problem. A number of benefits using a high-fidelity predictive modeling
approach are revealed.

In Chapter 2, Ingram and Cameron discuss a multiscale modeling approach for
granulation processes. The industrial significance of granulation processes is first
introduced and the multiscale nature of process systems, general characteristics
of multiscale models, and the emerging practice of multiscale modeling are then
presented in details. The relevant scales of observation for granulation processes
are outlined and several examples of the modeling techniques used at each scale
are provided. Key multiscale granulation models appearing in the literature are
discussed and then a handful of them are reviewed in more detail.

In Chapter 3, Amaro and Pistikopoulos discuss a number of theoretical princi-
pals behind polymerization process modeling, applied to free-radical polymer reac-
tions. Comprehensive kinetic schemes encompassing a large number of reactions
that might occur during these processes were discussed in details. The specific
modeling of polymer molecular properties was highlighted and exemplified for
molecular weight distribution with different approaches regarding its representa-
tion. In conclusion, it was emphasized that modeling of polymerization processes
is a powerful tool allowing researchers and companies to perform a broad variety of
simulations, allowing for a number of model-based activities such as optimization
and control.

Panos and coworkers in Chapter 4 present a detailed dynamic model for PEM
fuel cell stack. The model has the great advantage of less computation time con-
suming while providing results consistent with the literature, and well oriented
toward control. Then a reduced order state space model is designed for optimal
control studies. Finally an explicit/multiparametric MPC controller has been de-
veloped to keep the controlled variables close to the set points while taking care
of the physical constraints on the manipulated variables, namely the reactant and
coolant mass flows. The controller finally selected shows good performance to re-
sist the disturbances in the load.

In Chapter 5, Kikkinides and coworkers present a detailed modeling framework
for pressure swing adsorption flowsheets. Several research challenges are identi-
fied and a generic modeling framework for the separation of gas mixtures using
multibed PSA flowsheets is presented. The core of the framework represents a de-
tailed adsorbent bed model relying on a coupled set of mixed algebraic and partial
differential equations for mass, heat, and momentum balance at both bulk gas and
particle level, equilibrium isotherm equations, and boundary conditions according
to the operating steps. The adsorbent bed model provides the basis for building
PSA flowsheets with all feasible interbed connectivities. Operating procedures are
automatically generated, thus facilitating the development of complex PSA flow-
sheet for an arbitrary number of beds. Finally, a case study concerning the sepa-
ration of hydrogen from steam-methane reforming of gas is used to illustrate the
application and efficiency of the developed framework.
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In Chapter 6, Kenig introduces a complementary modeling approach for the re-
active separation process based on a reasonable and efficient combination of dif-
ferent approaches. He presented a classification of kinetics-based models based on
the complexity of the process fluid dynamics. He concluded that for geometrically
simple flows, the fluid dynamic approach (FDA) should be applied as it gives full
information about the process in a purely theoretical manner. For very complex
flow patterns, the rate-based approach (RBA) represents a good choice provided
that the model parameters are determined properly. The hydrodynamic analogy
approach serves as an intermediate between the FDA and RBA and is suitable for
those processes in which a certain structure or order exists. Several case studies
were used to highlight the use of all approaches.

Seferlis and coworkers in Chapter 7 discuss efficient reduced order dynamic mod-
eling techniques of complex reactive and multiphase separation processes. They illus-
trated that combined nonequilibrium and orthogonal collocation on finite elements
(NEQ/OCFE) models become quite attractive for real-time control applications of
these processes. A novel optimization-based finite element partition algorithm is
then presented to enhance the ability of the proposed models to control the approx-
imation error along the column within reasonable levels despite the influence of
exogenous disturbances responsible for the formation of steep fronts in the com-
position and temperature profiles. Case studies that involve reactive absorption,
reactive distillation, and multiphase reactive distillation illustrated the strengths of
the NEQ/OCFE techniques.

In Chapter 8, Abbas and coworkers discuss the modeling of crystallization pro-
cesses. An overview of industrial crystallization, crystallization fundamentals, and
mechanisms is first presented followed by detailed discussions on crystallization
modeling, model solution techniques, and model analysis. Various model applica-
tion areas are illustrated before finishing with two examples, namely, antisolvent
crystallization and seeded cooling crystallization.

In Chapter 9, Mujtaba highlights the state-of-the-art and future challenges
in modeling of multistage fHash (MSF) desalination process. He presents how
computer-aided process engineering modeling techniques and the practitioners of de-
salination can address sustainable freshwater issue of tomorrow’s world via de-
salination. He also emphasizes that the exploitation of full economic benefit of
replacing time-consuming and expensive experimental studies of MSF processes
requires development of accurate mathematical models and model-based applica-
tions such as optimization and control. Several research challenges in this area are
also introduced.

Recognizing the importance of a mechanistic systems approach to biological sci-
ences, Androulakis in Chapter 10 discusses the potential role of systems-based
approaches in the quest to better understand critical physiological responses. He
demonstrated how quantitative models of inflammation can be used as minimal
representations of biological reality to formulate and test hypotheses, reconcile ob-
servations, and guide future experimental design. He also demonstrated the possi-
bility of the generalization of this framework in a wide range of disease progression
models. It was emphasized that it is important to realize that in silico models will
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never replace either biological or clinical research. They could, however, rationalize
the decision-making process by establishing the range of validity and predictability
of intervention strategies, thus enabling the use of systems biology in translational
research.

In Chapter 11, Alonso and coworkers consider the dynamic modeling of dis-
tributed (bio)processes, that is, those described by partial differential equations.
Their contribution considers aspects that are particularly relevant for robust con-
trol, with emphasis on model reduction techniques for convection—diffusion-
reaction processes. These techniques are illustrated with examples, including a
bioreactor for the production of gluconic acid and the control of a tubular reactor.

Paving the way toward a “closed-loop” holistic framework for bioprocess automa-
tion, Kiparissides and coworkers in Chapter 12 cover the development of dynami-
cal models of biological systems. They introduced and explained in a step-by-step
fashion a biological model development framework. The scientific concerns, chal-
lenges, and “real-life” problems associated with each step of the framework were
clearly highlighted. Adapting a “real-life” example from their previous work, the
logical and systematic evolution of a model were presented from the conception to
validation as it flows through the various steps of the model development frame-
work. The key conclusion of this contribution is that by utilizing a systematic way
of organizing available information, one can avoid conducting experiments for the
sake of experimentation and develop models with an a priori set aim.

Balsa-Canto and coworkers in Chapter 13 consider optimal identification strate-
gies and their application in bioprocess engineering. Dynamic model building is
presented as an iterative loop with three key topics: parameter estimation (model
calibration), identifiability analysis, and optimal experimental design. These au-
thors highlight the need of checking identifiability and using global optimization
techniques for proper parameter estimation in nonlinear dynamic models. Further,
the use optimal experimental design to increase the identifiability is motivated.
These techniques are illustrated with two examples — one related with dynamic
modeling of microbial growth, and another with dynamic modeling of the produc-
tion of gluconic acid in a fed-batch bioreactor.

In Chapter 14, Nicolai and coworkers consider the multiscale dynamic modeling
of transport phenomena in foods, with emphasis in plant-based foods. These au-
thors show how the multiscale paradigm combines micro- and macro-scale models
through homogenization and localization, and which numerical methods should
be used to solve the resulting model. The use of this approach is exemplified with
a case study considering application of multiscale gas exchange in fruit.

Marquez-Lago and Marchisio in Chapter 15 consider dynamic modeling in syn-
thetic biology, that is, the engineering of novel biological functions and systems.
These authors adopt a detailed modeling methodology based on the concept of
composable parts. Further, they pay special attention to the selection of a correct
simulation regime, highlighting the problems of using deterministic approaches,
and discussing alternative stochastic simulation methods. These topics and tech-
niques are illustrated considering a synthetic oscillator made of three genes.
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In Chapter 16, Bezzo and coworkers reviewed the role of the optimal model-
based design of experiments techniques with reference to the problem of individ-
ual parameter identification for complex physiological models of glucose home-
ostasis. It was emphasized that the parameter identification problem is a tradeoff
between several issues: acquisition of a high information content from a clinical
test, compliance to a number of constraints in the system inputs and outputs, prac-
tical applicability of the test. It was showed that model-based design of experiments
does allow designing effective and safe clinical tests, where the administration of
carbohydrates (i.e., glucose) and possibly insulin is exploited to provide dynamic
excitation to the body system, and a proper schedule of blood samples is used to
collect the information generated during the test.

This collection represents a set of stand-alone works that captures recent re-
search trends in the development and application of modeling frameworks tech-
niques of various process and biosystems. We hope that by the end of the book,
the reader will have developed a commanding comprehension of the main aspects
of dynamic process modeling, the ability to critically access the key characteristics
and elements related to the construction and application of detailed models and
the capacity to implement the new technology in practice.

We are extremely grateful to the authors for their outstanding contributions and
for their patience, which have led to a final product that far exceeded our expecta-
tions.
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