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Preface

Control of polymeric structure is among the most important endeavours of
modern macromolecular science. In particular, tailoring the positioning and
strength of intermolecular forces within macromolecules by synthetic meth-
ods and thus gaining structural control over the final polymeric materials has
become feasible, resulting in the field of supramolecular polymer science. Be-
sides other intermolecular forces, hydrogen bonds are unique intermolecular
forces enabling the tuning of material properties via self-assembly processes
over a wide range of interaction strength ranging from several k] mol™! to sev-
eral tens of k] mol~!. Central for the formation of these structures are precursor
molecules of small molecular weight (usually lower than 10 000), which can
assemble in solid or solution to aggregates of defined geometry. Intermolecular
hydrogen bonds at defined positions of these building blocks as well as their re-
spective starting geometry and the initial size determine the mode of assembly
into supramolecular polymers forming network-, rodlike-, fibrous-, disclike-
, helical-, lamellar- and chainlike architectures. In all cases, weak to strong
hydrogen-bonding interactions can act as the central structure-directing force
for the organization of polymer chains and thus the final materials’ properties.

The important contribution of hydrogen bonds to the area of supramolecu-
lar polymer chemistry is definitely outstanding, most of all since the potency
of hydrogen-bonding systems has been found to be unique in relation to
other supramolecular interactions. Thus the high level of structural diversity
of many hydrogen-bonding systems as well as their high level of directional-
ity and specificity in recognition-phenomena is unbeaten in supramolecular
chemistry. The realization, that their stability can be tuned over a wide range
of binding strength is important for tuning the resulting material proper-
ties, ranging from elastomeric to thermoplastic and even highly crosslinked
duroplastic structures and networks. On the basis of the thermal reversibil-
ity, new materials with highly tunable properties can now be prepared, be-
ing able to change their mechanical and optoelectronic properties with very
small changes of external stimuli. Thus the field of hydrogen-bonded polymers
forms the basis for stimuli responsive and adaptable materials of the future.
Moreover, the recognition that many aspects of the “bulk”-supramolecular
polymer-chemistry can be transferred to binding and recognition events on
surfaces is an area still in its infancy. Binding processes of polymers, nanopar-
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ticles or other nanosized objects onto (polymeric, quasipolymeric) surfaces
by noncovalent interactions already forms a new and strongly expanding area
in nanoscience and nanotechnology.

The exploitation of the high specificity of the hydrogen-bonding systems,
combined with their dynamic features has opened a new branch in polymer
science: dynamic materials with self selection processes. This field, opened
up by J. M. Lehn with his “dynamers” is highly prospective for the generation
of new materials with properties unachievable with conventional monomers
and polymeric materials, relying purely on the covalent bond, instead of the
noncovalent, supramolecular interaction.

The present volume on Hydrogen-Bonded Polymers provides an overview on
these aspects within four main chapters. Different points of view are mirrored,
featuring aspects related to (a) classification of hydrogen-bonded polymers
according to the nature of the connecting hydrogen bond (by W. H. Binder and
R. Zirbs) (b) small-molecule self assembly into hydrogen-bonded polymers
(by L. Bouteiller) (c) properties of the resulting materials, with a main focus on
the interplay of dynamic properties and polymer-microphases (ten G. Brinke,
J. Ruokolainen, O. Ikkala) and (d) nanocomposite materials derived from
Hydrogen-bonding elements (H. Xu, S. Srivastava, V. M. Rotello). The varying
titles demonstrate that hydrogen-bonded supramolecular polymer chemistry
is a highly interdisciplinary research field, where structure, properties and
function are closely interrelated to each other.

Still in its infancy, the field of supramolecular polymer chemistry has def-
initely found its own area and fixed place within the area of macromolecular
and polymer chemistry. Although with a certain delay, the recognition of “de-
signed” intermolecular forces as a tool to direct the ordering and function of
macromolecules has now been widely acknowledged and respected. The trans-
fer of principles of “organic” supramolecular chemistry is fully accomplished
and used with great perfection. Many principles exploited during the past
years in this field therefore have already found their application in polymeric
material science, and will definitely expand in the near future.

Vienna, February 2007 Wolfgang H. Binder
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Abstract Control of polymeric structure is among the most important endeavors of mod-
ern macromolecular science. In particular, tailoring the positioning and strength of
intermolecular forces within macromolecules by synthetic methods and thus gaining
structural control over the final polymeric materials has become feasible, resulting in the
field of supramolecular polymer science. Besides other intermolecular forces, hydrogen
bonds are unique intermolecular forces enabling the tuning of material properties via
self-assembly processes over a wide range of interaction strength ranging from several
k] mol™! to several tens of k] mol!. The present review provides an overview of hydrogen-
bonded polymers, with a focus directed towards the type of hydrogen bond as well as
their effect on the final, ordered materials. Thus, the ordering effects of single-, double-,
triple-, quadruple and multiple hydrogen bonds are discussed separately. Furthermore,
various architectures as well as the use of hydrogen bonds on planar surfaces to assemble
quasipolymeric structures are discussed.

Keywords Hydrogen bond - Supramolecular polymer - Surface - Polymeric material -
Self assembly
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Abbreviations

A hydrogen-bonding acceptor

AFM atomic force microscopy

AA-PDMS diacid telechelic poly(dimethylsiloxane)
A-PDMS monoacid telechelic poly(dimethylsiloxane)

ATRP atom transfer radical polymerization
D hydrogen-bonding donor
DAP 2,6-diamino-pyridine

DBSA dodecyl benzenesulfonic acid
DMSO dimethyl sulfoxide

MDI methylene-4,4'-diisocyanate

NDP nonadecyl phenol

MMA methyl methacrylate

NMP N-methyl-morpholine

NMR nuclear magnetic resonance

PAA poly(acrylic acid)

PCL poly(caprolactone)

PDMS poly(dimethylsiloxane)

PDP pentadecyl phenol

PEO poly(ethylene oxide)

PEOx poly(ethyloxazoline)

PEK poly(ether ketone)

PI poly(isoprene)

PIB poly(isobutylene)

PIPS polymeric induced phase separation
PMMA poly(methylmethacrylate)

PPO poly(propylene oxide)

PS poly(styrene)

PSSA poly(styrene-4-sulfonic acid)
PS(OH)  poly(4-hydroxy-phenol)

PVAc poly(vinylacetate)

PVDAT  poly(vinyldiaminotriazine)

PVP poly(vinylpyridine)

P4VP poly(4-vinylpyridine)

ROMP ring opening metathesis polymerisation
SAM self assembled monolayer

SAXS small angle X-ray scattering

SIMS dynamic secondary ion mass spectrometry
SSL strong segregation limit

STVPy styrene-co-4-vinylpyridine
STVPh styrene-co-4-vinylphenol

STM scanning tunnelling microscopy
THF tetrahydrofurane
TDI toluene-2,4-diisocyanate

WAXS wide angle X-ray scattering
WSL weak segregation limit
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1
Introduction

Polymeric structure and structure formation has been subjected to strong
changes in point-of-view during the past centuries. First, the nineteenth
century saw macromolecules viewed as mainly colloids and these were pos-
tulated as being aggregates of small organic molecules with the forces in-
volved being “side valence forces or Nebenvalenzen”; however, this view was
changed drastically by Herrmann Staudinger [1], who realized that covalent
bonds were the building force of macromolecules, which were then identified
as the constituent structure of polymers. It was realized that the character-
istic properties of polymers were determined by the initial structure of the
macromolecules, i.e., the identity of the monomers, the degree of polymer-
ization, the mode of distribution of specific monomers within the chain, the
topology of the chains (linear, grafted polymers or dendritic), the stereo-
chemistry (tacticity) and the crosslinking between chains. Furthermore, the
ordering of macromolecules was found to be most important in determining
the final materials properties by influencing crystallization behavior, phase
separation and thus in turn the chemical and mechanical properties of poly-
mers. Most of all, concepts to use weak hydrogen-bonding interactions were
found to promote the formation of miscibility and thus the controlled forma-
tion of polymer blends [2].

Lehn et al. [3] first introduced the principle of supramolecular polymer
chemistry more as an extension of substituting small organic molecules by
telechelic polymers than “real” long chain polymer structures. It was sug-
gested that intermolecular forces can be used to assemble small organic
molecules into two- and three-dimensional structures reminiscent of linear
or crosslinked polymers. Among other forces (such as dipol-dipol interac-
tions, pi-pi stacking and charge-charge interactions) the hydrogen bonds
form a central structural building-force to generate chains with low mo-
lecular weights as well as dendritic and weakly crosslinked structures in
solution. The idea, however, was revolutionary in that it disrupted the con-
cept of conventional polymer chemistry (in the sense of Staudinger), which
regarded polymers as covalently bound monomeric units. Therefore, not
only the general influence of hydrogen bonds on the bulk-polymeric struc-
ture (as in polyamides, polycarbonates, polyesters) or the solution-structure
(as in PMMA, PVAc, PVP, PEOx, polyvinylalcohol) is taken into account,
moreover the hydrogen bond as a tuned interaction is used for polymer or-
ganization. Thus, polymers became a much larger group of materials, which
now included even higher molecular weight aggregates with thermally re-
versible linkages at room temperature or below. A variety of “highly ordered”
structures, in particular those on planar surfaces such as Langmuir-Blodgett
films, self-assembled monolayers were given the name “two-dimensional
polymer”.
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More highly organized supramolecular polymers were then introduced by
Stadler et al. [4] by transforming a linear, noncrosslinked soft polybutadiene
chain into a thermoplastic elastomer. The concept relied on the statistical in-
troduction of hydrogen bonds into the polybutadiene thus creating defined
noncovalent crosslinking sites between the polymer chains. It was found that
a hydrogen binding donor-acceptor unit for each 50 butadiene-units (i.e.: at
approx. 2 mol %) is sufficient to drastically change the thermal and mechani-
cal properties of the material, thus demonstrating that a couple of weak bonds
on the side of a polymer chain can be very efficient in determining the final
materials properties.

From this the concept of supramolecular polymers has evolved [5,6].
Central for the formation of these structures are precursor molecules of
small molecular weight (usually lower than 10000), which can assemble in
solid or solution to aggregates of defined geometry. Intermolecular hydrogen
bonds at defined positions of these building blocks as well as their respective

A D —AG+—D3—KC
small molecule assembling
main chain

side chain liquid
crystallic polymers
(SCLP’s)

A

star-type/ dendritic

crosslinked type (b)

6&&6&6

surface

dendritic assembly

Fig.1 Architectures of different hydrogen bonded, supramolecular polymers (A =
hydrogen-bonding acceptor; D = hydrogen-bonding donor)
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starting geometry and the initial size determine the mode of assembly into
supramolecular polymers. Ordering can form network-, rodlike-, fibrous-,
disclike-, helical-, lamellar- and chainlike structures as depicted in Fig. 1. In
all cases, weak-to-strong hydrogen-bonding interactions can act as the central
structure-directing force for the organization of polymer chains and thus the
final materials properties.

The present review focuses on the formation of macromolecular struc-
ture via hydrogen bonds based upon supramolecular concepts, with a focus
on the literature published between 2000 and 2006. There are a number of
recent reviews relating to the topic of hydrogen-bonded supramolecular poly-
mers, mostly with a focus on specific hydrogen-bonding systems [7-13].
The last review on hydrogen-bonded polymers, related to a broader view on
hydrogen-bonding systems by Meijer et al. in 2001 [14] is therefore taken
as a starting point for the newer literature. Thus, the focus is directed at
designed interactions, deriving from either a functionalized monomer, or
a polymeric endgroup, including hydrogen-bonding systems only. The associ-
ation of molecules with a small molecular weight (below 1000 Dalton) will not
be covered, since the work by L. Bouteiller in this series deals with this very
aspect. Sect. 2 will give a short overview of hydrogen bonds, a compilation
on their strength as well as those used in supramolecular polymer chem-
istry. Sect. 3 will deal with polymers bearing hydrogen bonds in their main
chain, ordered according to the number of hydrogen bonds involved. Sect. 4
deals with polymers bearing hydrogen bonds in their side-chain. Sect. 5 fo-
cuses on the use of hydrogen bonds on surfaces, to bind polymers or generate
quasipolymeric structures.

2
Hydrogen Bonds

Hydrogen bonds as intermolecular forces have been reviewed intensely in
books [15] and reviews [16]. In principle three different classes of hydrogen-
bonding systems are discriminated (Fig. 2) (a) strong hydrogen bonds, (b)
medium or weak hydrogen bonds, and (c) nonclassical hydrogen bonds. Jef-
frey and Sanger classify strong hydrogen bonds as those where two center
bonds (such as F—H*"F; O —H'*O~; Ot — H'**O bonds) are involved, which
display short distances, a strongly directional nature and association energies
higher than ~ 40 k] mol™'. Medium and weak hydrogen bonds are classified
by a D —H'""A structure, where directionality is partially lost, and the bond
energies are between 20-40 k] mol™'. Usually, the residue A is strongly elec-
tronegative, whereas the residue D may be electronegative or even a carbon
atom. Nonclassical (also termed unconventional) hydrogen bonds [17] in-
volve the interaction of D — H with A = 7r-systems as well as transition metals
(interaction directly with the metal or via the metal hydride) or boron hy-
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S5 5+ o
D—H-A
e
donor acceptor

) D—=H-Tr
O+—H """ O D—H-A D—H--M
F—H-F D—H-H—B
strong hydrogen normal/ weak non classical
bonds hydrogen bonds hydrogen bonds

15-20 kJ mol”
Fig.2 Overview on various hydrogen bonds ranging from strong to nonclassical hydrogen
bonds (D = hydrogen-bonding donor; A = hydrogen-bonding acceptor; M = metal; B =
boron)

drides. In general, the strength of each individual hydrogen bond is strongly
dependent on solvent effects, most of all polar and protic solvents. It has
been demonstrated quite often, that the addition of a polar solvent signifi-
cantly lowers the hydrogen bond over many orders of magnitude. Therefore,
the supramolecular chemistry of hydrogen-bonded polymers is mostly done
in aprotic and nonpolar solvents such as linear and cyclic alkanes, toluene,
dichloromethane and chloroform.

The main parameter determining the strength of a hydrogen-bonding
system is the number of individual bonds involved. Thus, as a rule of the
thumb, more hydrogen bonds imply a stronger binding interaction, with the
ideal value of about 7.4 k] mol~!/hydrogen bond. Figures 3-5 list the most
prominent hydrogen-bonding systems used in supramolecular chemistry of
polymers. Starting from those with only one hydrogen-bonding interaction
(Fig. 3), two-centered hydrogen bonds (Fig. 4), three- (Fig. 5), four- and mul-
tiple hydrogen-bonding interactions (Fig. 6) are listed. In contrast to other

_C\ 7\ /+ ’oo S—
SR O{ N “ooc

Fig.3 Molecular structures of single hydrogen bonds



