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Preface

To someone, having heard about fractals but not yet acquainted with them, they might
seem to be regarded with suspicion: How could “real” objects — accessible by sight and
not only by thought — be replicas of arbitrarily small parts of themselves? How could
a continuous path which runs almost everywhere parallel to sea level climb up to any
height? How could a continuous curve pass through every point of a square?

Getting acquainted with fractals opens a glimpse into a world of wonders, but these
wonders are strongly supported by a frame of serious mathematics in which various
of its branches play together: geometry, analysis, linear algebra, topology, measure
theory, functions of complex variables, algebra, .. . .

I have tried to do justice to both aspects: the fascination of geometric objects as well
as the serious mathematical background — as far as an advanced undergraduate level.
At some points, where the technicalities would transgress this level, I have at least
indicated where an interested reader could find the whole story. I hope the presentation
adds something worthwhile to the many remarkable books on this topic which also
lead much farther into the world of fractals.

These books also contain something which a reader might miss in the present one: I
have chosen to avoid the possibility of frustrating the reader by expecting him to do ex-
ercises; he will find them in abundance in the mentioned books (e.g. [Barnsley, 1988],
[Falconer, 1990]) if he wants to. However, it is at least my intention to make acces-
sible — via the internet address http://techmath.uibk.ac.at/helmberg—
the programs producing the illustrations, thus enabling the reader to create and play
with fractals according to his own taste.

My thanks are due to the de Gruyter Publishing Company, in particular to Dr. Plato,
for their interest in and support of this book project. My first book has been dedicated
to my parents, my wife, and my two eldest children, but there are more people who
mean very much to me. Therefore this book is dedicated

to Chri, Moni, and Mui.
Innsbruck, Cavalese, August 2006 Gilbert Helmberg
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1 Fractals and dimension

1.1 The game of deleting and replacing

The word “fractal” comes from the Latin word “frangere” (with past participle “frac-
tus”) which means “to break”, “to destroy”. Let us begin with exploring how such a
destruction process may still generate some new mathematical object displaying inter-
esting features.

1.1.1 The CANTOR set

Let us define an operation f (such an operation is commonly called an operator) work-
ing on any closed segment [a,b] C R (= the real line) by deleting the open middle
third Ja + 25%,b — 252[, and let us denote the interval [0, 1] C R by A(g). Application

of fto A deletes the interval ]1. %[ and produces a closed set
Aw = [0,5] U [5: 1],
the union of the two disjoint closed intervals Ay = [0, 1] and 4; = [3,1], each of

which has length % If we apply f now to A(;) we get a closed set
Apy = f(Agy)) = F(f(Aw)) C Ay

consisting of four disjoint intervals Ao, Ao, 410, A1, of length L= %; each.
Since we want to continue the application of f, in order to avoid the clumsy notation
F(f(...)) let us use the notation

fOA) = fA),
FEDL) = f(F®A)).

(We shall call the index k the level of the construction.) Applied to our interval Aoy
this allows us to define a sequence of closed sets A (1 < k < o0) by

Awy = FP(Aq)
satisfying
A(()) P A(]) D s T A(k) =2 A(k+]) ) Fa g (1.1)

The set A, is the union of 2* closed intervals A;, ; (j; € {0,1}, 1 <i < k) of
length 3% each. A sequence {A)}72, as well behaved as indicated by (1.1) raises the
question whether there exists, in some sense, a limit set A. Indeed, by a well known
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topological theorem, the decreasing sequence of non-empty compact sets {A )}z,
has the property that the set

A= () Aw,
k=1

called the CANTOR set [Cantor, 1883], is compact and not empty. See Figure 1.1 for
an illustration of the set A4).

Figure 1.1. The set A4, pictured in blue, is the union of sixteen closed
component-intervals. The open set [0, 1] \ A(4), pictured in red, is decomposed
according to the intervals deleted at levels 1, 2, 3 and 4.

Still, as to the “size” of the set A, we notice that it is contained in all sets Ak

(1 £k < o0); as observed above, the total length of the 2¥ component-intervals of

Ay is g—z = (%)’c which approaches zero as k& — oo. If A is to have any “length” in
some sense at all, it therefore must be zero. Indeed, using one-dimensional LEBESGUE
measure £ (= E‘), which on the sets A(k) coincides with their lengths, by a well-

known theorem of measure theory we get
~ : o 2\k
£(A) = £([) Aw) = Jim L(Aw) = lim (3)" =o.
k=1

It is not surprising that A is not empty: the countably many end points of all component
intervals A;, ;. (0 < k < oo, j; € {0,1}, 1 < 4 < k) are never deleted by
any application of f and therefore are all contained in A. But there are more points
surviving all these applications:

Let us write every non-zero z € [0, 1] as an infinite series z = Yoo 3 (k€
{0,1,2}), in short ¢ = 0.z,z, ... with the understanding that any finite sum of the
formz = 0.z12,...1 = 37, £ (2, = 1) shall be written as a non-ending periodic
triadic fraction

n—1 o0
— _ Tk 2
z=0z122...2,.1022... = E 3T+ E 7
k=1 k=n+1
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Application of f to A eliminates all points x for which z; = 1. The set A1) therefore
contains none of these. Renewed application of f to A(jy now eliminates all points =
for which z, = 1 (in both intervals Ay and A; which are characterized by z; = 0
and z; = 2 respectively). Repeated application of f subsequently eliminates all points
z € Ay for which z; = 1 (1 < k < o). What remains? Precisely the set of all
points z € A whose “digits” x;, are either O or 2. It is well known that the points
of the interval [0, 1], apart from the countably many “dyadic rational” points, are in
one-to-one correspondence with the points which in dyadic notation may be written as
y = 0.y1y2-.. (yx € {0,1}). The conclusion is that our set A is not countable but
contains as many points as the interval [0, 1], i.e. has the cardinality of the reals.

A mathematician may be tempted to exploit the relation between the set A and a
subset of [0, 1] even further. Just now we have associated with the point

oo
=2 % me{o1}, D 1=3 1=00
k=1 yie=0 yr=1
the point
aly) = Z 23yk e A.
k=1

Denoting by N the set of natural numbers, we may extend this mapping a to the com-
pact topological product {0, 1} of all {0, 1}-sequences by defining

Z% for §={yx}i (v € {0,1}),
k=1

e.g. ifj=1{0,1,1,...}, thena(y) = Y pe, % = %, while for §j = {1,0,0,...} we get
a(j) = %. Itis not hard to see that the mapping a : {0, 1} — A is bijective (every point
of A is the image of exactly one sequence in {0, 1}") and continuous. A well-known
topological theorem (cf. [Kelley, 1955, p. 141]) then asserts that A is homeomorphic to
{0, 1}, In particular, A is completely disconnected (in topology such a space is also
called zero-dimensional) and perfect (i.e. closed without isolated points), but nowhere
dense. Remembering that [0, 1] may be considered as a subset of {0, 1} and roughly
speaking, the mapping & furnishes an extended parametrization of the set A (i.e. to
every dyadic rational point of [0, 1] there correspond two “neighbouring” points of A).
At this point we may notice one more property of the set A which is important for
us since it will turn up in adapted form repeatedly in sets which we legitimately may
call “fractals”: suppose we omit the component A, of the set Ay and restrict repeated
application of f to the interval Ag. What would we have got? Evidently part of A, to
wit a copy of the set A, only reduced by a factor % in size. In fact, every component
set Aj, . j. of Ay, treated by itself with successive applications of f, produces a set
which is part of A and, at the same time, a copy similar to A but reduced by a factor
In other words, one may say that the set A is “self-similar” in the sense that it con51sts
of smaller parts which are still similar to A.
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A slight adaption of our construction of the CANTOR set furnishes a set with strik-
ingly different features. Since we are now going to move from R to R?, and more
generally to R", for any vector x = (z),...,z,) € R™ we shall use the EUCLIDEAN

norm |z| = /> _, #2. The (EUCLIDEAN) distance of two points a € R" and b € R"
is then given by |a — b|.

1.1.2 The KOCH curve

We shall now modify the operator f considered in Section 1.1.1 by allowing it to work
on any closed segment [a,b] in the plane R?, and in the following way: it not only
deletes but replaces the open middle third Ja + 25%,b — 252[ by two sides of an equi-
lateral triangle, side length [252|, located to the left of [a, b] if this segment is directed
from a to b. We shall apply f also to piecewise linear curves in R2. Such a curve E is
the graph of a piecewise linear, not necessarily continuous, function g : [0, 1] — R2. It
consists of finitely many segments [a;, b;] (1 < j < n), at most pairwise joined at their
endpoints. The result f(E) of applying f to E is obtained by applying the operator f
to each of the component segments of E.

We start out again with the segment Ay = [0, 1] on the z-axis. Application of
J to A(g) produces a continuous piecewise linear curve Aqy = f(A()) consisting of
four segments denoted consecutively by A; (0 < j < 3), each of which has length %
(Figure 1.2).

Figure 1.2. The generator A of the KOCH curve.

Why not apply f again, this time to A1), i.e. to each of these four segments? The
result is a continuous piecewise linear curve Ay = f? (A ) consisting of 42 seg-
ments Aj 5, (0 < j; < 3) of length 3% each. Repetition of this procedure furnishes
a sequence of continuous piecewise curves A(k) consisting of 4% segments A; .
(0<4 <3, 1<i<k)of length 3% each (Figures 1.3-1.5). Unfortunately, how-
ever, these curves, considered as subsets of R2, do not anymore satisfy (1.1). Do they
still converge in some sense to some limit? The eye emphatically approves, but does
mathematics support this impression?

In order to investigate the situation, we turn our attention to the sequence of seg-
ments Aj ;. in R? constituting the curve Ak successively, starting at (0,0) and
ending at (1,0). Notice that the endpoints of these segments are preserved when f



Section 1.1 The game of deleting and replacing

a b

Figure 1.3. The approximating set A,y for the KOCH curve. The grey lines
illustrate the open set condition (Definition 1.1.3.2) needed for the computation

of dimg (A).

7
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Figure 1.4. The approximating set A3 for the KOCH curve.

Figure 1.5. A closer approximation (A7)) of the KOCH curve A. The four
colours indicate subsets of A which are similar to the whole of A.
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is applied to A since they only become endpoints of smaller subsegments. Let us
define a map ¢, : [0,1] — A(y) in the following way: write every = € [0, 1] in its
“4-adic expansion”

If we agree to use the finite sum expansion when possible, then 0 < ri(z) < 4—',;. Now
define ¢ (z) to be the point of the segment A, ,, . -, lying at distance 7« (z) from the
starting point of this segment (in the positive direction). Evidently ¢y is a continuous
piecewise linear map of [0, 1] onto A.

What happens to ¢y if k increases to co? In order to find out about this let us
observe what happens to the point ¢ () if z is given as in (1.2) and if we define

m
Tm) Z p
As pointed out above, for the “4-adic rational” part z,,,) of z and for all £ > m we get

Ok (T(m)) = Im(T(m)) € Az,....em,0,...0; C A (1.3)

(in fact, ¢ (z(m)) is the starting point of this subsegment of A ). Observing the effect
of consecutive applications of f to A;, . .. we find that every such application moves
the point ¢4 (z) € Az, zpm,...zx 1O its new position ¢pi1(z) € Az zm, .z o0is
about a distance of at most g,i—, (four times the length of A, . ., ;arough estimate

(z; €{0,1,2,3},1 <i<oo). (1.2)

-h'H
A'H

since at most T‘ﬁl would do). Adding this up for £ > m we get the estimate

S

-1

60(&) = om@) < 3 5o < L%

)

(1.4)

I
3

As a consequence, we see that the sequence {¢x(z)};2, is a CAUCHY sequence (=
fundamental sequence) in the plane R? and has to converge to a limit point ¢(z). By
(1.4) we even see that the functions ¢;, converge uniformly on [0, 1] and that therefore
the limiting map ¢ furnishes a continuous curve in R?. This curve is called the KOCH
curve [von Koch, 1904].

The fact that endpoints of subsegments Az, ... .z, of A(m) do not change position
under further applications of f, as expressed by (1.3), helps to realize that the KOCH
curve is nowhere differentiable. Non-differentiability is readily seen at such an end-
point itself: For any z € [0, 1] consider the point py = ¢(x(,,,)) as defined above (for
x = 1 the reasoning has to be slightly adapted). For k& > m let

p1 is the endpoint of the subsegment of A beginning at ¢(z,, ), p is the endpoint of
the following subsegment of A(ry- If k > m is sufficiently large, then the points p; and
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p, are arbitrarily close to py, while the secants pop; and pop, always include the same
positive angle.

It is somewhat more tedious to deal with a point ¢(z) if « is not a 4-adic rational
number. Roughly speaking, if ¢ were differentiable in z, then two different points
close to ¢(x) (as which will be taken endpoints of subsegments) would have to define a
secant close to the tangent in ¢(z), and this will be shown to be impossible. Recall that
for complex-valued functions g and h of the argument y one writes h = o(g) as y — a

if lim, 4 % = 0, while h = O(g) as y — a means limsup,_, Jl’;—%ll < co. Corre-

spondingly o(1) (as y — x) will denote a function which vanishes as y — z, and O(1)
will denote a function which remains bounded as y — z. Although not strictly neces-
sary the notation o;(1), 02(1),..., O1(1), Oz(1),... will be used to indicate different
such functions.

1.1.2.1 Lemma. Suppose ¢ is differentiable in x, i.e. there exists a vector q € R? such
that
¢(x) —dy) = (g+o(1)) - (z—y) as y— =,
and let y; — z and y, — x in such a way that
-y = Oi1(y1 —y2),
(1.5)
z—y2 = Oxy1 —v2)-

Then
o) — d(y2) = (g+o(1)) - (y1 —v2). (1.6)

Proof of the lemma.
(1) — d(y2) = (@) — d(32) — (8(z) — P(y1))
(¢ +0x(1)) - (z = 92) = (¢ + 01 (1)) - (z — )
= ¢ (W —p)+ol) (z-y)+o(l) (z-y)
= [g+0(1)- O2(1) + 01 (1) - O1(1)] - (w1 — 2). 0

In order to show that ¢ cannot be differentiable in z let, for arbitrarily large m,

— o 1 — 2
Y1 = T(m), Y2 1= ) + Y2 1= Tm) F
Then
_ 2
lyi =7 = 2|y —wp| = sy
4
le—nl < =7 = 4y -,
w1 < 25 =3
Y| = amr '|y1—92|7
_ 2 —
lz -7 < = -l
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So the requirements (1.5) are satisfied, but not (1.6) since we have already seen that the
secants ¢(y1)¢(y2) and ¢(y1)¢(7z) always include the same small but non-zero angle.
Consequently, the function ¢ cannot be differentiable in z.

How do we measure the length of a continuous curve? Take any finite sequence
S = {p; 7—o of points corresponding to increasing parameter values and compute
lg := Z;LZI |[pj — pj—1]- The length of the curve is then by definition the supremum
over all values /g obtained in this way. For the KOCH curve it seems convenient to

choose Sy := {¢( 4) jk o» the endpoints of the 4* subsegments in Ayy. Each of these

has length 3, therefore we get Is, = ($)*. As k — oo this also tends to co. We

conclude that the KOCH curve has infinite length, rather a contrast to the CANTOR set.

One last question (for the time being): what would have happened if we had re-
stricted the action of f to one subsegment A4; (j € {0, 1,2,3}) of A or, more gener-
ally, to a subsegment A ir Of Ary? ObV10usly we would have got a curve similar
to A but reduced to 3, resp. %,c in size. In other words, again the KOCH curve is
self-similar, it consists of parts which are smaller copies of itself.

1.1.3 Heuristics of dimension

We have not yet pinned down any property of a set in R? or R? or, more generally,
R™ which might be strange and characteristic enough to make it reasonable to call the
set a “fractal”. Self-similarity as encountered in the CANTOR set or the KOCH curve
seems a possible candidate but there are perfectly harmless sets which also are self-
similar, for instance a square in the plane. Shrinking its sides to half the original length
again produces a square and the original square consists of four copies thereof — if we
allow the sides of the small squares to coincide. In fact, this is intimately connected
with the assertion that a full square is a set of dimension 2: reducing the sides to +
of their original length produces a set, n? coples of which (allowmg sides to c01n<:1de)
constitute the original square. Similarly n? cubes of 51de length make up the unit
cube — correspondmg to its three-dimensionality — and n' mtervals of length - Joined
together give the one-dimensional unit interval.
If we had not already been familiar with the concept of dimension we could have
“computed” the dimension of a square A, say, using the following reasoning: the di-
mension of A is the exponent d determined by the fact that the set A is a (“almost
disjoint”, Whatever this may mean) union of n? similar copies of A, reduced in size by
the factor L - (such a similar copy S(A) is congruent with the set :LA which originates
by multlplymg every vector in A by the factor §(S) = %). In other words and roughly
speaking (to be made more precise in later sections), if §(S) = 717 and if A happens to
be decomposable into Ng(A) sets of the form 6(S) A, then the self-similarity dimension
dimg(A4) may be considered as the solution of the equation

(%S))dims(/;) _ Ns(A),

ie.
log Ns(A)

dims(A) = —logé(S)'

1.7
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Applying this reasoning to the CANTOR set A we recall that it is indeed the disjoint
union of two similar copies of itself, reduced by the factor §(S) = 1. Formula (1.7)
now gives for its dimension

OE2 063,

dlmS(A) = 10g3 ~

There is one objection to be dealt with: dimg(A) has not been defined in a unique
way. If A is the (almost) disjoint union of Ng(A) copies of §(S)A, then 6(S)A is
the (almost) disjoint union of Ng(A) (almost) disjoint copies of (§(S))2A4 and A is
the (almost) disjoint union of Ngw) (A) = (Ns(A))? copies of §(S?))A = (§(5))?A.
Should we have been told, before applying formula (1.7), whether to work with S or
with S, or even with the k-fold iteration S*) of 2 Fortunately this does not matter,

since
log Nok)(A) _ klogNs(A) _ log Ns(A)

5(S®) klogd(S) ~ logé(S) °

If there is some doubt left, please be patient until dimension is discussed more thor-
oughly in Section 1.2 and Section 1.3.

The startling fact is that the dimension of the CANTOR set, with this understanding,
is not 1 but less, to wit approximately 0.63 (also different from its topological dimen-
sion as a completely disconnected set, which is zero). Looking now at the KOCH curve,
formula (1.7) tells us that (if the points in which the subsegments join do not do any
damage) its self-similarity dimension is %%g—g ~ 1.26, while of course the topological
dimension of each of its approximating sets Aggy is 1.

A theorem (Theorem 1.3.8) to be stated later tells a condition under which this
reasoning is applicable, the so-called open set condition. Let us first state explicitly
what is meant by a similarity.

1.1.3.1 Definition. A map S : R® — R" is called a similarity with similarity factor s
if |S(z) — S(y)| = s |z —y]| for some positive number s and for all z € R" and y € R™.

1.1.3.2 Definition. The similarities .S, (1 <@ < k) satisfy the open set condition if
there exists a bounded non-empty open set V with mutually disjoint image sets S;(V)

(I <4 < k) satisfying Ule S;(V)cV.

In essence the mentioned theorem states that if the similarities S; (1 < ¢ < k)
satisfy the open set condition and if 4 = Ule Si(A), then (1.7) and even a more
general formula for the computation of dimg(A4 = Ule S;(A)) may be applied. The
open set condition is obviously satisfied in the case of the CANTOR set: denoting by S,
and S, the similarities mapping the unit interval into its first and last third, as the set V
we may take e.g. the open unit interval. It is satisfied also in case of the KOCH curve:
let V be the open isosceles triangle with vertices a = (0,0), b = (1,0), ¢ = (3, ﬁ)
(see Figure 1.3). V contains its four images under the similarities mapping the unit
interval into the four line segments constituting the set A(1). As a consequence, we
may also note that the whole set A is contained in the closure of the triangle V.

Are we now in position to define what is meant by a “fractal”? Yes and no. Yes,
since the original definition of MANDELBROT [Mandelbrot, 1982, Section 3] says: A
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subset of R™ is a fractal (also fractal set) if its topological dimension (which is always
an integer, zero for the CANTOR set and one for the KOCH curve) is less than its
“fractal” dimension (for the CANTOR set and the KOCH curve as computed above).
According to this definition a set with a non-integral dimension (as discussed more
generally later) is automatically a fractal. No, since it has turned out that there are sets
(as the dragon Section 1.1.5.3 to be discussed later) that one would like to consider
as fractals but are not included by the just mentioned definition. Up to now it has
seemed difficult to find a satisfying definition including all sets which one would like
to consider as fractals.

1.1.4 Initiators and generators

There are evidently two ways to produce more general fractals besides the CANTOR set
and the KOCH curve: we can start from a set different from the unit interval A = [0, 1]
and we can (as we have done already) change the definition of the map f. The first
is done by defining a set of segments A, then called the initiator, upon which the

iterates f(*) of f should act. An example is provided as follows.

1.1.4.1 The KOCH island

Let A be the equilateral triangle below the z-axis, one side of which is the unit
interval [0,1]. Applying the map f defining the KOCH curve (Section 1.1.2) to the
three segments constituting the set Ay produces a star with six vertices which we
may also imagine as an equilateral hexagon, each side of which carries an equilateral
triangle of side length % (Figure 1.5). The next application of f adds twelve smaller
equilateral triangles of side length %. Continuing this procedure eventually produces
the contour of a set looking like a snow flake, consisting of three copies of the KOCH
curve we know from Section 1.1.2. The idea of it being surrounded by water leads to
calling it the KOCH island (Figures 1.6, 1.7).

Figure 1.6. The first approximating set A; for the KOCH island.
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Figure 1.7. A closer approximation (A 7)) of the KOCH island.

Still, there is more to this: somebody seeing it for the first time and being asked to
estimate the length of the coast line may think: “Well, a little bit more than the perime-
ter of a circle roughly the same size; taking into account the coasts of the peninsulas
and the bays, perhaps twice this perimeter.” Asked to look a bit closer and perhaps to
use a compass with a rather small opening he may to his surprise find that his measure-
ment of the coast line becomes longer and longer as he decreases this opening, until we
disclose to him that already one third of the coast line — our well-known KOCH curve
— has infinite length.

It is in this line of thought that MANDELBROT [Mandelbrot, 1982, Section 5] points
out that also e.g. the coast line of England, measured with increasing precision, turns
out to have infinite length.

Keeping, for the time being, the unit interval as our initiator A(0), we may change
the mapping f by requiring that it should act on every segment of any union B of
segments by replacing this segment with a — suitably diminished — similar copy of a
given union G of segments, called the generator. Let us look at several samples of the
vast family of fractals obtained in this way.

1.1.4.2 A modified KOCH curve

Suppose the generator G consists of five segments of length % each, obtained by re-
placing the two middle segments of the KOCH curve generator with three sides of a
square (Figure 1.8).

We may think of f as employing five similarity maps S; (1 < i < 5) each with
similarity factor 1. Now the fractal A = lim_ oo f (¥)(A(g)), defined in essentially
the same way as in Section 1.1.2, consists of the union of five similar copies S; A
(1 <4 <'5) joined at the vertices of the original generator G = A(1), but the first two
and the last two copies having a lot more points (in fact a whole diagonal segment)
in common (Figure 1.9). Still, the open set condition (Definition 1.1.3.2) is satisfied:

the open isosceles right-angled triangle D with A(p) as hypotenuse contains the union



