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E

Intended Audience

This text covers the topics that are treated in a typical, one-semester undergraduate course in
chemical reaction engineering. Such a course is taught in almost every chemical engineer-
ing curriculum, internationally. The last three chapters of the book extend into topics that
may also be suitable for graduate-level courses.

Goals

Every engineering text that is intended for use by undergraduates must address two needs.
First, it must prepare students to function effectively in industry with only the B.S.
degree. Second, it must prepare those students that go to graduate school for advanced
coursework in reaction kinetics and reactor analysis. Most of the available textbooks fall
short of meeting one or both of these requirements. “Chemical Reactions and Chemical
Reactors” addresses both objectives. In particular:

Focus on Fundamentals: The text contains much more on the fundamentals of chemical
kinetics than current books with a similar target audience. The present material on
kinetics provides an important foundation for advanced courses in chemical kinetics.
Other books combine fundamentals and advanced kinetics in one book, making it difficult
for students to know what’s important in their first course.

Emphasis on Numerical Methods: The book emphasizes the use of numerical methods to
solve reaction engineering problems. This emphasis prepares the student for graduate
coursework in reactor design and analysis, coursework that is more mathematical in nature.

Analysis of Kinetic Data: Material on the analysis of kinetic data prepares students for
the research that is a major component of graduate study. Simultaneously, it prepares
students who will work in plants and pilot plants for a very important aspect of their job.
These features are discussed in more detail below.

“Chemical Reactions and Chemical Reactors” is intended as a text from which to teach.
Its objective is to help the student master the material that is presented. The following
characteristics aid in this goal:

Conversational Tone: The tone of the book is conversational, rather than scholarly.

Emphasis on Solving Problems: The emphasis is on the solution of problems, and the
text contains many example problems, questions for discussion, and appendices. Very few
derivations and proofs are required of the student. The approach to problem-solving is to
start each new problem from first principles. No attempt is made to train the student to
use pre-prepared charts and graphs.

Use of Real Chemistry: Real chemistry is used in many of the examples and problems.
Generally, there is a brief discussion of the practical significance of each reaction that is
introduced. Thus, the book tries to teach a little industrial chemistry along with chemical
kinetics and chemical reactor analysis. Unfortunately, it is difficult to find real-life
examples to illustrate all of the important concepts. This is particularly true in a
discussion of reactors in which only one reaction takes place. There are several important
principles that must be illustrated in such a discussion, including how to handle reactions
with different stoichiometries and how to handle changes in the mass density as the
reaction takes place. It was not efficient to deal with all of these variations through real
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examples, in part because rate equations are not openly available. Therefore, in some
cases, it has been necessary to revert to generalized reactions.

Motivation and Differentiating Features

Why is a new text necessary, or even desirable? After all, the type of course described in
the first paragraph has been taught for decades, and a dozen or so textbooks are available
to support such courses. ‘“Chemical Reactions and Chemical Reactors” differs
substantially in many important respects from the books that are presently available.
On a conceptual level, this text might be regarded as a fusion of two of the most
influential (at least for this author) books of the past fifty years: Octave Levenspiel’s
“Chemical Reaction Engineering” and Michel Boudart’s ‘“Kinetics of Chemical
Processes.” As suggested by these two titles, one of the objectives of this text is to
integrate a fundamental understanding of reaction kinetics with the application of the
principles of kinetics to the design and analysis of chemical reactors. However, this text
goes well beyond either of these earlier books, both of which first appeared more than
forty years ago, at the dawn of the computer era.
This text is differentiated from the reaction engineering books that currently are

available in one or more of the following respects:
1. The field of chemical kinetics is treated in some depth, in an integrated fashion that
emphasizes the fundamental tools of kinetic analysis, and challenges the student to
apply these common tools to problems in many different areas of chemistry and
biochemistry.
2. Heterogeneous catalysis is introduced early in the book. The student can then solve

reaction engineering problems involving heterogeneous catalysts, in parallel with

problems involving homogeneous reactions.

3. The subject of transport effects in heterogeneous catalysis is treated in significantly
greater depth.

4. The analysis of experimental data to develop rate equations receives substantial
attention; a whole chapter is devoted to this topic.

5. The text contains many problems and examples that require the use of numerical
techniques.

The integration of these five elements into the text is outlined below.

Topical Organization
Chapter 1 begins with a review of the stoichiometry of chemical reactions, which leads
into a discussion of various definitions of the reaction rate. Both homogeneous and
heterogeneous systems are treated. The material in this chapter recurs throughout the
book, and is particularly useful in Chapter 7, which deals with multiple reactions.
Chapter 2 is an “overview” of rate equations. At this point in the text, the subject of
reaction kinetics is approached primarily from an empirical standpoint, with emphasis on
power-law rate equations, the Arrhenius relationship, and reversible reactions (thermo-
dynamic consistency). However, there is some discussion of collision theory and
transition-state theory, to put the empiricism into a more fundamental context. The intent
of this chapter is to provide enough information about rate equations to allow the student
to understand the derivations of the “design equations” for ideal reactors, and to solve
some problems in reactor design and analysis. A more fundamental treatment of reaction
kinetics is deferred until Chapter 5. The discussion of thermodynamic consistency
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includes a “disguised” review of the parts of chemical thermodynamics that will be
required later in the book to analyze the behavior of reversible reactions.

The definitions of the three ideal reactors, and the fundamentals of ideal reactor
sizing and analysis are covered in Chapters 3 and 4. Graphical interpretation of the
“design equations” (the “Levenspiel plot™) is used to compare the behavior of the two
ideal continuous reactors, the plug flow and continuous stirred-tank reactors. This follows
the pattern of earlier texts. However, in this book, graphical interpretation is also used
extensively in the discussion of ideal reactors in series and parallel, and its use leads to
new insights into the behavior of systems of reactors.

In most undergraduate reaction engineering texts, the derivation of the ‘“‘design
equations™ for the three ideal reactors, and the subsequent discussion of ideal reactor
analysis and sizing, is based exclusively on homogeneous reactions. This is very
unfortunate, since about 90 percent of the reactions carried out industrially involve
heterogeneous catalysis. In many texts, the discussion of heterogeneous catalysis, and
heterogeneous catalytic reactors, is deferred until late in the book because of the
complexities associated with transport effects. An instructor who uses such a text can
wind up either not covering heterogeneous catalysis, or covering it very superficially in
the last few meetings of the course.

“Chemical Reactions and Chemical Reactors” takes a different approach. The
design equations are derived in Chapter 3 for both catalytic and non-catalytic reactions. In
Chapter 4, which deals with the use of the design equations to size and analyze ideal
reactors, transport effects are discussed qualitatively and conceptually. The student is then
able to size and analyze ideal, heterogeneous catalytic reactors, for situations where
transport effects are not important. This builds an important conceptual base for the
detailed treatment of transport effects in Chapter 9.

As noted previously, one major differentiating feature of ‘“‘Chemical Reactions and
Chemical Reactors™ is its emphasis on the fundamentals of reaction kinetics. As more and
more undergraduate students find employment in “‘non-traditional” areas, such as electronic
materials and biochemical engineering, a strong grasp of the fundamentals of reaction
kinetics becomes increasingly important. Chapter 5 contains a unified development of the
basic concepts of kinetic analysis: elementary reactions, the steady-state approximation, the
rate-limiting step approximation, and catalyst/site balances. These four “tools” then are
applied to problems from a number of areas of science and engineering: biochemistry,
heterogeneous catalysis, electronic materials, etc. In existing texts, these fundamental tools
of reaction kinetics either are not covered, or are covered superficially, or are covered
in a fragmented, topical fashion. The emphasis in ‘“Chemical Reactions and Chemical
Reactors” is on helping the student to understand and apply the fundamental concepts of
kinetic analysis, so that he/she can use them to solve problems from a wide range of technical
areas.

Chapter 6 deals with the analysis of kinetic data, another subject that receives scant
attention in most existing texts. First, various techniques to test the suitability of a given
rate equation are developed. This is followed by a discussion of how to estimate values of
the unknown parameters in the rate equation. Initially, graphical techniques are used in
order to provide a visual basis for the process of data analysis, and to demystify the
subject for “‘visual learners”. Then, the results of the graphical process are used as a
starting point for statistical analysis. The use of non-linear regression to fit kinetic data
and to obtain the “best” values of the unknown kinetic parameters is illustrated. The text
explains how non-linear regression can be carried out with a spreadsheet.

Multiple reactions are covered in Chapter 7. This chapter begins with a qualitative,
conceptual discussion of systems of multiple reactions, and progresses into the
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quantitative solution of problems involving the sizing and analysis of isothermal reactors
in which more than one reaction takes place. The numerical solution of ordinary
differential equations, and systems of ordinary differential equations, is discussed and
illustrated. The solution of non-linear systems of algebraic equations also is illustrated.

Chapter 8 is devoted to the use of the energy balance in reactor sizing and analysis.
Adiabatic batch and plug-flow reactors are discussed first. Once again, numerical
techniques for solving differential equations are used to obtain solutions to problems
involving these two reactors. Then, the CSTR is treated, and the concepts of stability and
multiple steady states are introduced. The chapter closes with a treatment of feed/product
heat exchangers, leading to a further discussion of multiplicity and stability.

The topic of transport effects in catalysis is revisited in Chapter 9. The structure of
porous catalysts is discussed, and the internal and external resistances to heat and mass
transfer are quantified. Special attention is devoted to helping the student understand the
influence of transport effects on overall reaction behavior, including reaction selectivity.
Experimental and computational methods for predicting the presence or absence of
transport effects are discussed in some detail. The chapter contains examples of reactor
sizing and analysis in the presence of transport effects.

The final chapter, Chapter 10, is a basic discussion of non-ideal reactors, including
tracer techniques, residence-time distributions, and models for non-ideal reactors. In most
cases, the instructor will be challenged to cover this material, even superficially, in a one-
semester course. Nevertheless, this chapter should help to make the text a valuable
starting point for students that encounter non-ideal reactors after they have completed
their formal course of study.

Numerical Methods

“Chemical Reactions and Chemical Reactors” contains problems and examples that
require the solution of algebraic and differential equations by numerical methods. By the
time students take the course for which this text is intended, a majority of them will have
developed some ability to use one or more of the common mathematical packages, e.g.,
Mathcad, Matlab, etc. This text does not rely on a specific mathematical package, nor
does it attempt to teach the student to use a specific package. The problems and examples
in the book can be solved with any suitable package(s) that the student may have learned
in previous coursework. This approach is intended to free the instructor from having to
master and teach a new mathematical package, and to reinforce the students’ ability to
use the applications they have already learned. Many of the numerical solutions that are
presented in the text were developed and solved on a personal computer using a
spreadsheet. Appendices are included to illustrate how the necessary mathematics can be
carried out with a spreadsheet. This approach gives students a “tool” that they eventually
might need in an environment where a specific mathematical package was not available.
The spreadsheet approach also familiarizes the student with some of the mathematics that
underlies the popular computer packages for solving differential equations.

In the Classroom

“Chemical Reactions and Chemical Reactors” is written to provide the instructor with
flexibility to choose the order in which topics are covered. Some options include:

Applications Up Front: Lately, I have been covering the chapters in order, from Chapter
1 through Chapter 9. This approach might be labeled the “mixed up” approach because it
switches back and forth between kinetics and reactor sizing/analysis. Chapter 2 provides
just enough information about chemical kinetics to allow the student to understand ideal
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reactors, to size ideal reactors, and to analyze the behavior of ideal reactors, in Chapters 3
and 4. Chapters 5 and 6 then return to kinetics, and treat it in more detail, and from a
more fundamental point of view. I use this approach because some students do not have
the patience to work through Chapters 2 and 5 unless they can see the eventual
application of the material.

Kinetics Up Front: Chapter 5 has been written so that it can be taught immediately after
Chapter 2, before starting Chapter 3. The order of coverage then would be Chapters 1, 2,
S5, 3,4,6,7, 8, and 9. This might be referred to as the “kinetics up front” approach.

Reactors Up Front: A third alternative is the “‘reactors up front” approach, in which the
order of the chapters would be either: 1, 2, 3,4,7,8,9,5,60r1,2,3,4,7,8,5,6,9. The
various chapters have been written to enable any of these approaches. The final choice is
strictly a matter of instructor preference.

Some important topics are not covered in the first version of this text. Two
unfortunate examples are transition-state theory and reactors involving two fluid phases.
An instructor that wished to introduce some additional material on transition-state theory
could easily do so as an extension of either Chapter 2 or Chapter 5. Supplementary
material on multiphase reactors fits well into Chapter 9.

Based on my personal experience in teaching from various versions of this text, I
found it difficult to cover even the first nine chapters, in a way that was understandable to
the majority of students. I seldom, if ever, got to Chapter 10. A student that masters the
material in the first nine chapters should be very well prepared to learn advanced material
“on the job,” or to function effectively in graduate courses in chemical kinetics or
chemical reaction engineering.

Instructor Resources

The following resources are available on the book website at www.wiley.com/college/
roberts. These resources are available only to adopting instructors. Please visit the
Instructor section of the website to register for a password:

Solutions Manual: Complete solutions to all homework exercises in the text.

Image Gallery: Figures from the text in electronic format, suitable for use in lecture
slides.

Instructor’s Manual: Contains the answers to all of the “Exercises’ in the book.
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