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PREFACE

Some of this material was first presented by one of the authors (R.E.M.)
as a one-semester graduate level topics course in numerical analysis during
the spring of 1966 in the Computer Sciences Department at the Madison
campus of the University of Wisconsin; the present text represents an ex-
panded version of the lecture notes for that course. Our intent is to present
briefly the theoretical background in differential equations and the modern
computational methods of solving such equations in such a way as to empha-
size the interaction between the two topics. Thus, this book is not a traditional
text in either the theory of differential equations or numerical analysis alone;
no theorems are stated and proved in detail. Our primary goal is to indicate
some ways in which theoretical concepts and computation can be combined
to attack a problem efficiently.

With this goal in mind, we have divided the material into three parts.
The first two parts comprise a survey of abstract theory and computational
methods that use theoretical insights. In the third part we examine trans-
formations that can be used as analytical and computational tools to solve
many kinds of problems; it is one of our main contentions that pre-analysis
and transformations which utilize partial knowledge about the solutions
are of great value. We are primarily interested in initial value problems,
especially in Part 3, although we do examine boundary value problems as
well; eigenvalue problems are not included at all.

Although much of this text could be understood by a person without



viii PREFACE

knowledge of either differential equations or numerical analysis, it is in-
tended for an audience aware of the nature of both of these subjects and
interested in studying their interactions in order to achieve more accurate
and efficient computation. We hope that this material will help raise interest
in the general application of analytical techniques to computations; we would
especially like to see the growth of machine-automated analytical methods,
which have only recently become feasible.

Thanks are due—and are herewith given to—our colleague, Ben Noble,
whose many suggestions are invaluable.

Madison, Wisconsin James W. Daniel
November, 1969 Ramon E. Moore
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NOTATIONAL CONVENTIONS

A bibliography of books and articles cited in the text begins on page 165:
throughout the text these are referred to by the numbers given them in the
bibliography. References to parts of this text itself take the form “Section
2.3,” which refers to the third titled section in Chapter 2, or the form “Eq.
2-3.” which refers to the third numbered equation in Chapter 2.

A1

Vectors will be denoted both as (31, . . ., y.) and | : }. If y is a vector
yn

and f a vector-valued function of y, f(y) denotes (fi(y1, . . -, ¥u)s - « + » (V15

., n)). The matrix 9f/dy has as its 7, j element the scalar df;/dy;.

MATHEMATICAL

SYMBOL MEANING
E" n-dimensional real Euclidean space
-1 An arbitrary vector norm and the generated matrix norm
I leo The maximum norm
For vectors: ||x||,, = max |x;|
1<i<n
n
For matrices: ||All, = max 2 |Aij|
1<isnj=1
€ Is a member of
C Is a subset of
d
" (prim —
(prime) 7

u(h) = O(h) There is a constant K such that |u(h)| < K|h| as h—0
u(h) = o(h) lim (#\) =0

h—0
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PART 1

THEORETICAL
BACKGROUND

Many mathematical problems that arise in practice do not fit into neat
classes that can be treated by a well-developed theory. A reasonable man,
however, should make use of any applicable theory whenever possible in
order to acquire some understanding of the behavior of the solution to his
problem. In these first three chapters we survey briefly some of the theoretical
results that we feel can most often contribute to reducing the overall effort
of computing a solution. We by no means claim to review everything that
might be useful.

Chapter 1 discusses geometric concepts related to differential equations,
and therefore dwells briefly on such topics as curves, surfaces, trajectories,
integral surfaces, and vector fields. Chapter 2 examines several aspects of
initial value problems, including the existence, uniqueness, and representa-
tion of solutions; dependence of the solutions on the initial data and on the
differential equation (perturbation theory); and the asymptotic behavior of
solutions. The chapter concludes with a few remarks on periodic solutions.



2 THEORETICAL BACKGROUND

Existence, uniqueness, and representation of solutions to boundary value
problems are treated in Chapter 3, along with reformulations of the problem
as an integral equation or variational problem; we also discuss a relevant
monotonicity property.
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BASIC CONCEPTS;
GECMETRY

1.1 INTRODUCTION

We are interested in ordinary differential equations, that is, in equations
involving the derivative of an unknown function with respect to a single
variable 7, often understood to represent time. In particular, we often will
consider equations of the form

y = f(y).

If y = »(¢) is a real-valued function of the real variable 7, the differentia
equation tells y whether it should increase ()’ = f(y) > 0) or decrease
(V' = f(y) < 0), and how rapidly it should do either (rapidly if |y'| = |f(»)|
is large) at any value of y.

More generally, if y and f are vectors in n-dimensional Euclidean space
Er,sothaty = (y1, ..., yn)and f(y) = (fi(V1s - - - s Va)s - - s [u(V1y « + o5 V))s
the differential equation still describes how at any point y the vector y must
modify itself in order to qualify as a solution. Just as in one dimension a
positive or negative value for f(y) means “increase” or ‘‘decrease,” the
vector f(y) indicates the direction in which y must move, and the magnitude
of f(y) indicates speed. Such an intuitive geometrical view of differential
equations is often useful; we pursue these notions further.

1.2 VECTOR FIELDS;
DIFFERENTIABLE CURVES AND SURFACES

Let Y be a set of vectors y = (1, . . . , V) i E*. A vector field on Y is a
mapping f = (f1, . . . , f») assigning a vector f(y) € E" to each y € Y. The
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vector field is said to be continuous if the mapping f is continuous; this is
equivalent to continuity for each of the real-valued functions fily), i=1,
2, ..., n. Perhaps the simplest way to describe a vector field graphically is

FIGURE 1-1. f(y,, ¥,) = (V1. Vs3)

to draw the vector f(y) as emanating from the point y. Thus, Figures 1-1
through 1-4 depict vector fields on E?, although not all possible vectors are
drawn.

/]
4

FIGURE 1-2. f(y,,y,) = (1,1)

The first three vector fields are continuous; the fourth is not, since fi(y1, y2)
is discontinuous along the line y; = 1. The third vector field looks somewhat
discontinuous along the unit circle because of the directions of the field
near there; the limit from inside or outside the circle is the same, however,
saving the day. The limit is, in fact, zero (i.e., (0, 0)), and the field is said to
vanish at such a point. The field in Figure 1-1 vanishes only at y = (0, 0);
that in Figure 1-2 never vanishes; that in Figure 1-3 vanishes at y = (0, 0)
as well as along y; + y3 = 1; and that in Figure 1-4 vanishes along y; = 0.



