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arl Frederick Gauss, born in 1777, is one of the foremost mathemati-
ccians the world has known. Labeled the “prince of mathematicians” and
viewed by some as on par with Sir Isaac Newton, the various works of Gauss
have influenced a wide range of fields in mathematics and science. Although
very few in the finance profession are familiar with his great contributions
and body of work—which are published by the by the Royal Society of
Gottingen in seven quatro volumes—most are familiar with his important
work in probability theory that bears his name: the Gaussian distribution.
The more popular name for this distribution is the normal distribution and
was also referred to as the “bell curve” in 1733 by Abraham de Moivre,
who first discovered this distribution based on his empirical work. Every
finance professional who has taken a probability and statistics course has
had a heavy dose of the Gaussian distribution and probably can still recite
some properties of this distribution.

The normal distribution has found many applications in the natural sci-
ences and social sciences. However, there are those who have long warned
about the misuse of the normal distribution, particularly in the social sci-
ences. In a 1981 article in Humanity and Society, Ted Goertzel and Joseph
Fashing (“The Myth of the Normal Curve: A Theoretical Critique and Ex-
amination of its Role in Teaching and Research”) argue that

The myth of the bell curve has occupied a central place in the theory
of inequality . . . Apologists for inequality in all spheres of social life
have used the theory of the bell curve, explicitly and implicitly, in
developing moral rationalizations to justify the status quo. While
the misuse of the bell curve has perbaps been most frequent in the
field of education, it is also common in other areas of social science
and social welfare.

A good example is in the best-selling book by Richard Herrnstein and
Charles Murray, The Bell Curve, published in 1994 with the subtitle Intel-
ligence and Class Structure in American Life. The authors argue based on
their empirical evidence that in trying to predict an individual’s income or
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job performance, intelligence is a better predictor than the educational level
or socioeconomic status of that individual’s parents. Even the likelihood to
commit a crime or to exhibit other antisocial behavior is better predicted by
intelligence, as measured by IQ, than other potential explanatory factors.
The policy implications drawn from the book are so profound that they set
off a flood of books both attacking and supporting the findings of Herrnstein
and Murray.

In finance, where the normal distribution was the underlying assumption
in describing asset returns in major financial theories such as the capital asset
pricing theory and option pricing theory, the attack came in the early 1960s
from Benoit Mandelbrot, a mathematician at IBM’s Thomas J. Watson Re-
search Center. Although primarily known for his work in fractal geometry,
the finance profession was introduced to his study of returns on commod-
ity prices and interest rate movements that strongly rejected the assumption
that asset returns are normally distributed. The mainstream financial models
at the time relied on the work of Louis Bachelier, a French mathematician
who at the beginning of the 20th century was the first to formulate random
walk models for stock prices. Bachelier’s work assumed that relative price
changes followed a normal distribution. Mandelbrot, however, was not the
first to attack the use of the normal distribution in finance. As he notes,
Wesley Clair Mitchell, an American economist who taught at Columbia
University and founded the National Bureau of Economic Research, was the
first to do so in 1914. The bottom line is that the findings of Mandelbrot
that empirical distributions do not follow a normal distribution led a leading
financial economist, Paul Cootner of MIT, to warn the academic commu-
nity that Mandelbrot’s finding may mean that “past econometric work is
meaningless.”

The overwhelming empirical evidence of asset returns in real-world
financial markets is that they are not normally distributed. In commenting
on the normal distribution in the context of its use in the social sciences,
“Earnest Ernest” wrote the following in the November 10, 1974, in the
Philadelphia Inquirer:

Surely the ballowed bell-shaped curve has cracked from top to bot-
tom. Perbaps, like the Liberty Bell, it should be enshrined some-
where as a memorial to more heroic days.

Finance professionals should heed the same advice when using the normal
distribution in asset pricing, portfolio management, and risk management.

In Mandelbrot’s attack on the normal distribution, he suggested that
asset returns are more appropriately described by a non-normal stable
distribution referred to as a stable Paretian distribution or alpha-stable
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distribution (a-stable distribution), so-named because the tails of this dis-
tribution have Pareto power-type decay. The reason for describing this dis-
tribution as “non-normal stable” is because the normal distribution is a
special case of the stable distribution. Because of the work by Paul Lévy,
a French mathematician who introduced and characterized the non-normal
stable distribution, this distribution is also referred to as the Lévy stable
distribution and the Pareto-Lévy stable distribution. (There is another im-
portant contribution to probability theory by Lévy that we apply to financial
modeling in this book. More specifically, we will apply the Lévy processes,
a continuous-stochastic process.)

There are two other facts about asset return distributions that have been
supported by empirical evidence. First, distributions have been observed to
be skewed or nonsymmetric. That is, unlike in the case of the normal distri-
bution where there is a mirror imaging of the two sides of the probability
distribution, typically in a skewed distribution, one tail of the distribution is
much longer (i.e., has greater probability of extreme values occurring) than
the other tail of the probability distribution. Probability distributions with
this attribute are referred to as having fat tails or heavy tails. The second
finding is the tendency of large changes in asset prices (either positive or
negative) to be followed by large changes, and small changes to be followed
by small changes. This attribute of asset return distributions is referred to
as volatility clustering.

In this book, we consider these well-established facts about asset return
distributions in providing a framework for modeling the behavior of stock
returns. In particular, we provide applications to the financial modeling used
in asset pricing, option pricing, and portfolio/risk management. In addition
to explaining how one can employ non-normal distributions, we also provide
coverage of several topics that are of special interest to finance professionals.

We begin by explaining the need for better financial modeling, followed
by the basics of probability distributions—the different types of probability
distributions (discrete and continuous), specific types of probability distribu-
tions, parameters of a probability distribution, and joint probability distri-
butions. The definition of the stable Pareto distribution {(we adopted the term
a-stable distribution in this book) that Mandelbrot suggested is described.
Although this distribution has certain desirable properties and is superior
to the normal distribution, it is not suitable in certain financial modeling
applications such as the modeling of option prices because the mean, vari-
ance, and exponential moments of the return distribution have to exist. For
this reason, we introduce distributions that we believe are better suited for
financial modeling, distributions obtained by tempering the tail properties
of the a-stable distribution: the smoothly truncated stable distribution and
various types of tempered stable distributions. Because of their important
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role in the applications in this book, we review continuous-time stochastic
processes with emphasis on Lévy processes.

There are chapters covering the so-called exponential Lévy model, and
we study this continuous-time option pricing model and analyze the change
of measure problem. Prices of plain vanilla options are calculated with both
analytical and Monte Carlo methods.

After examples dealing with the simulation of non-normal random num-
bers, we study two multivariate settings that are suitable to explain joint
extreme events. In the first approach, we describe a multivariate random
variable for joint extreme events, and in the second we model the joint be-
havior of log-returns of stocks by considering a feasible dependence structure
together with marginals able to explain volatility clutering.

Then we get into the core of the book where we deal with examples
of discrete-time option pricing models. Starting from the classic normal
model with volatility clustering, we progress to the more recent models that
jointly consider volatility clustering and heavy tails. We conclude with a
non-normal GARCH model to price American options.

We would like to thank Sebastian Kring and Markus Héchstotter for
their coauthorship of Chapter 9 and Christian Menn for his coauthorship
of Chapter 12. We also thank Stoyan Stoyanov for providing the MATLAB
code for the skew z-copula.

The authors acknowledge that the views expressed in this book are their
own and do not necessarily reflect those of their employers.
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