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Preface

System identification is a common method for building the mathematical model
of a physical plant, which is widely utilized in practical engineering situations. In
general, the system identification consists of three key elements, i.e., the data, the
model, and the criterion. The goal of identification is then to choose one from
a set of candidate models to fit the data best according to a certain criterion. The
criterion function is a key factor in system identification, which evaluates the con-
sistency of the model to the actual plant and is, in general, an objective function
for developing the identification algorithms. The identification performances, such
as the convergence speed, steady-state accuracy, robustness, and the computational
complexity, are directly related to the criterion function.

Well-known identification criteria mainly include the least squares (LS) crite-
rion, minimum mean square error (MMSE) criterion, and the maximum likelihood
(ML) criterion. These criteria provide successful engineering solutions to most
practical problems, and are still prevalent today in system identification. However,
they have some shortcomings that limit their general use. For example, the LS and
MMSE only consider the second-order moment of the error, and the identification
performance would become worse when data are non-Gaussian distributed (e.g., with
multimodal, heavy-tail, or finite range). The ML criterion requires the knowledge of
the conditional probability density function of the observed samples, which is not
available in many practical situations. In addition, the computational complexity
of the ML estimation is usually high. Thus, selecting a new criterion beyond
second-order statistics and likelihood function is attractive in problems of system
identification.

In recent years, criteria based on information theoretic descriptors of entropy
and dissimilarity (divergence, mutual information) have attracted lots of attentions
and become an emerging area of study in signal processing and machine learning
domains. Information theoretic criteria (or briefly, information criteria) can capture
higher order statistics and information content of signals rather than simply their
energy. Many studies suggest that information criteria do not suffer from the limita-
tion of Gaussian assumption and can improve performance in many realistic sce-
narios. Combined with nonparametric estimators of entropy and divergence, many
adaptive identification algorithms have been developed, including the practical
gradient-based batch or recursive algorithms, fixed-point algorithms (no step-size),
or other advanced search algorithms. Although many elegant results and techniques
have been developed over the past few years, till now there is no book devoted to
a systematic study of system identification under information theoretic criteria. The
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primary focus of this book is to provide an overview of these developments, with
emphasis on the nonparametric estimators of information criteria and gradient-based
identification algorithms. Most of the contents of this book originally appeared in the
recent papers of the authors.

The book is divided into six chapters: the first chapter is the introduction to
the information theoretic criteria and the state-of-the-art techniques; the second
chapter presents the definitions and properties of several important information
measures; the third chapter gives an overview of information theoretic approaches
to parameter estimation; the fourth chapter discusses system identification under
minimum error entropy criterion; the fifth chapter focuses on the minimum infor-
mation divergence criteria; and the sixth chapter changes the focus to the mutual
information-based criteria.

It is worth noting that the information criteria can be used not only for system
parameter identification but also for system structure identification (e.g., model
selection). The Akaike’s information criterion (AIC) and the minimum description
length (MDL) are two famous information criteria for model selection. There have
been several books on AIC and MDL, and in this book we don’t discuss them in
detail. Although most of the methods in this book are developed particularly for
system parameter identification, the basic principles behind them are universal.
Some of the methods with little modification can be applied to blind source sepa-
ration, independent component analysis, time series prediction, classification and
pattern recognition.

This book will be of interest to graduates, professionals, and researchers who
are interested in improving the performance of traditional identification algorithms
and in exploring new approaches to system identification, and also to those who
are interested in adaptive filtering, neural networks, kernel methods, and online
machine learning.

The authors are grateful to the National Natural Science Foundation of China
and the National Basic Research Program of China (973 Program), which have
funded this book. We are also grateful to the Elsevier for their patience with us
over the past year we worked on this book. We also acknowledge the support and
encouragement from our colleagues and friends.

Xi'an
P.R. China
March 2013



Symbols and Abbreviations

The main symbols and abbreviations used throughout the text are listed as follows.
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(-5-)
V4O,
E[]
f(x)
f/l(x)
Vif(x)
sign(.)
re)
("

I

Al
det A
TrA
rankA
log(.)

Z—l

R

R’l
p(X,Y)
Var(X]
Pr{A]

N (p, X)
Ula.b]
x* (k)
H(X)
Hy(X)
H,(X)
Val(X)
Sa(X)
Ha(X)
I(X:;Y)
Dy (X[|Y)
Dy(x|Y)
Jr

J¥

absolute value of a real number

Euclidean norm of a vector

inner product

indicator function

expectation value of a random variable

first-order derivative of the function f(x)
second-order derivative of the function f(x)
gradient of the function f(x) with respect to x

sign function

Gamma function

vector or matrix transposition

identity matrix

inverse of matrix A

determinant of matrix A

trace of matrix A

rank of matrix A

natural logarithm function

unit delay operator

real number space

n-dimensional real Euclidean space

correlation coefficient between random variables X and ¥
variance of random variable X

probability of event A

Gaussian distribution with mean vector y and covariance matrix X
uniform distribution over interval [a, b]

chi-squared distribution with & degree of freedom
Shannon entropy of random variable X

¢-entropy of random variable X

a-order Renyi entropy of random variable X
c-order information potential of random variable X
survival information potential of random variable X
A-entropy of discrete random variable X

mutual information between random variables X and ¥
KL-divergence between random variables X and Y
¢-divergence between random variables X and Y
Fisher information matrix

Fisher information rate matrix
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vi

p() probability density function

k(... Mercer kernel function

K(.) kernel function for density estimation
Ku(.) kernel function with width h

Gp(.) Gaussian kernel function with width A
Sy reproducing kernel Hilbert space induced by Mercer kernel &
Fy feature space induced by Mercer kernel «
W weight vector

Q weight vector in feature space

74 weight error vector

n step size

L sliding data length

MSE mean square error

LMS least mean square

NLMS normalized least mean square

LS least squares

RLS recursive least squares

MLE maximum likelihood estimation

EM expectation-maximization

FLOM fractional lower order moment

LMP least mean p-power

LAD least absolute deviation

LMF least mean fourth

FIR finite impulse response

IR infinite impulse response

AR auto regressive

ADALINE adaptive linear neuron

MLP multilayer perceptron

RKHS reproducing kernel Hilbert space
KAF kernel adaptive filtering

KLMS kernel least mean square

KAPA kernel affine projection algorithm
KMEE kernel minimum error entropy

KMC kernel maximum correntropy

PDF probability density function

KDE kernel density estimation

GGD generalized Gaussian density

Sas symmetric a-stable

MEP maximum entropy principle

DPI data processing inequality

EPI entropy power inequality

MEE minimum error entropy

MCC maximum correntropy criterion

P information potential

QIr quadratic information potential

CRE cumulative residual entropy

SIP survival information potential

QSIP survival quadratic information potential



Symbols and Abbreviations vii

KLID
EDC
MinMI
MaxMI
AIC
BIC
MDL
FIM
FIRM
MIH
ITL
BIG
FRIG
SIG
SIDG
SMIG
FP
FP-MEE
RFP-MEE
EDA
SNR
WEP
EMSE
IEP
ICA
BSS
CRLB
AEC

Kullback—Leibler information divergence
Euclidean distance criterion

minimum mutual information

maximum mutual information

Akaike’s information criterion

Bayesian information criterion

minimum description length

Fisher information matrix

Fisher information rate matrix

minimum identifiable horizon
information theoretic learning

batch information gradient

forgetting recursive information gradient
stochastic information gradient

stochastic information divergence gradient
stochastic mutual information gradient
fixed point

fixed-point minimum error entropy
recursive fixed-point minimum error entropy
estimation of distribution algorithm

signal to noise ratio

weight error power

excess mean square error

intrinsic error power

independent component analysis

blind source separation

Cramer—Rao lower bound

acoustic echo canceller
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1 Introduction

1.1 Elements of System Identification

Mathematical models of systems (either natural or man-made) play an essential
role in modern science and technology. Roughly speaking, a mathematical model
can be imagined as a mathematical law that links the system inputs (causes) with
the outputs (effects). The applications of mathematical models range from simula-
tion and prediction to control and diagnosis in heterogeneous fields. System identi-
fication is a widely used approach to build a mathematical model. It estimates the
model based on the observed data (usually with uncertainty and noise) from the
unknown system.

Many researchers try to provide an explicit definition for system identification.
In 1962, Zadeh gave a definition as follows [1]: “System identification is the deter-
mination, on the basis of observations of input and output, of a system within a
specified class of systems to which the system under test is equivalent.” It is almost
impossible to find out a model completely matching the physical plant. Actually,
the system input and output always include certain noises; the identification model
is therefore only an approximation of the practical plant. Eykhoff [2] pointed out
that the system identification tries to use a model to describe the essential charac-
teristic of an objective system (or a system under construction), and the model
should be expressed in a useful form. Clearly, Eykhoff did not expect to obtain an
exact mathematical description, but just to create a model suitable for applications.
In 1978, Ljung [3] proposed another definition: “The identification procedure is
based on three entities: the data, the set of models, and the criterion. Identification,
then, is to select the model in the model set that describes the data best, according
to the criterion.”

According to the definitions by Zadeh and Ljung, system identification consists
of three elements (see Figure 1.1): data, model, and equivalence criterion (equiva-
lence is often defined in terms of a criterion or a loss function). The three elements
directly govern the identification performance, including the identification accu-
racy, convergence rate, robustness, and computational complexity of the identifica-
tion algorithm [4]. How to optimally design or choose these elements is very
important in system identification.

The model selection is a crucial step in system identification. Over the past dec-
ades, a number of model structures have been suggested, ranging from the simple

System Parameter Identification. DOL: http:/dx.doi.org/10,1016/B978-0-12-404574-3.00001-4
© 2013 Tsinghua University Press Lid. Published by Elsevier Inc, All rights reserved.



2 System Parameter Identification

Figure 1.1 Three elements of system
System identification identification.

Data Model Criterion

linear structures [FIR (finite impulse response), AR (autoregressive), ARMA (auto-
regressive and moving average), etc.] to more general nonlinear structures [NAR
(nonlinear autoregressive), MLP (multilayer perceptron), RBF (radial basis func-
tion), etc.]. In general, model selection is a trade-off between the quality and the
complexity of the model. In most practical situations, some prior knowledge may
be available regarding the appropriate model structure or the designer may wish to
limit to a particular model structure that is tractable and meanwhile can make a
good approximation to the true system. Various model selection criteria have also
been introduced, such as the cross-validation (CV) criterion [5], Akaike's informa-
tion criterion (AIC) [6,7], Bayesian information criterion (BIC) [8], and minimum
description length (MDL) criterion [9.10].

The data selection (the choice of the measured variables) and the optimal input
design (experiment design) are important issues. The goal of experiment design is
to adjust the experimental conditions so that maximal information is gained from
the experiment (such that the measured data contain the maximal information about
the unknown system). The optimality criterion for experiment design is usually
based on the information matrices [11]. For many nonlinear models (e.g., the
kernel-based model), the input selection can significantly help to reduce the net-
work size [12].

The choice of the equivalence criterion (or approximation criterion) is another
key issue in system identification. The approximation criterion measures the differ-
ence (or similarity) between the model and the actual system, and allows determi-
nation of how good the estimate of the system is. Different choices of the
approximation criterion will lead to different estimates. The task of parametric sys-
tem identification is to adjust the model parameters such that a predefined approxi-
mation criterion is minimized (or maximized). As a measure of accuracy, the
approximation criterion determines the performance surface, and has significant
influence on the optimal solutions and convergence behaviors. The development of
new identification approximation criteria is an important emerging research topic
and this will be the focus of this book.

It is worth noting that many machine learning methods also involve three ele-
ments: model, data, and optimization criterion. Actually, system identification can
be viewed, to some extent, as a special case of supervised machine learning. The
main terms in system identification and machine learning are reported in Table 1.1.
In this book, these terminologies are used interchangeably.
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Table 1.1 Main Terminologies in System Identification and Machine Learning

System Identification Machine Learning
Model, filter Learning machine, network
Parameters, coefficients Weights

Identify, estimate Learn, train

Observations, measurements Examples, training data
Overparametrization Overtraining, overfitting

1.2 Traditional Identification Criteria

Traditional identification (or estimation) criteria mainly include the least squares
(LS) criterion [13], minimum mean square error (MMSE) criterion [14], and the
maximum likelihood (ML) criterion [15,16]. The LS criterion, defined by minimiz-
ing the sum of squared errors (an error being the difference between an observed
value and the fitted value provided by a model), could at least dates back to Carl
Friedrich Gauss (1795). It corresponds to the ML criterion if the experimental
errors have a Gaussian distribution. Due to its simplicity and efficiency, the LS cri-
terion has been widely used in problems, such as estimation, regression, and system
identification. The LS criterion is mathematically tractable, and the linear LS prob-
lem has a closed form solution. In some contexts, a regularized version of the LS
solution may be preferable [17]. There are many identification algorithms devel-
oped with LS criterion. Typical examples are the recursive least squares (RLS) and
its variants [4]. In statistics and signal processing, the MMSE criterion is a com-
mon measure of estimation quality. An MMSE estimator minimizes the mean
square error (MSE) of the fitted values of a dependent variable. In system identifi-
cation, the MMSE criterion is often used as a criterion for stochastic approximation
methods, which are a family of iterative stochastic optimization algorithms that
attempt to find the extrema of functions which cannot be computed directly, but
only estimated via noisy observations. The well-known least mean square (LMS)
algorithm [18—20], invented in 1960 by Bernard Widrow and Ted Hoff, is a sto-
chastic gradient descent algorithm under MMSE criterion. The ML criterion is
recommended, analyzed, and popularized by R.A. Fisher [15]. Given a set of data
and underlying statistical model, the method of ML selects the model parameters
that maximize the likelihood function (which measures the degree of “agreement”
of the selected model with the observed data). The ML estimation provides a uni-
fied approach to estimation, which corresponds to many well-known estimation
methods in statistics. The ML parameter estimation possesses a aumber of attrac-
tive limiting properties, such as consistency, asymptotic normality, and efficiency.
The above identification criteria (LS, MMSE, ML) perform well in most practi-
cal situations, and so far are still the workhorses of system identification. However,
they have some limitations. For example, the LS and MMSE capture only the
second-order statistics in the data, and may be a poor approximation criterion,
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especially in nonlinear and non-Gaussian (e.g., heavy tail or finite range distribu-
tions) situations. The ML criterion requires the knowledge of the conditional distri-
bution (likelihood function) of the data given parameters, which is unavailable in
many practical problems. In some complicated problems, the ML estimators are
unsuitable or do not exist. Thus, selecting a new criterion beyond second-order sta-
tistics and likelihood function is attractive in problems of system identification.

In order to take into account higher order (or lower order) statistics and to select
an optimal criterion for system identification, many researchers studied the non-
MSE (nonquadratic) criteria. In an early work [21], Sherman first proposed the
non-MSE criteria, and showed that in the case of Gaussian processes, a large fam-
ily of non-MSE criteria yields the same predictor as the linear MMSE predictor of
Wiener. Later, Sherman’s results and several extensions were revisited by Brown
[22], Zakai [23], Hall and Wise [24], and others. In [25], Ljung and Soderstrom
discussed the possibility of a general error criterion for recursive parameter identifi-
cation, and found an optimal criterion by minimizing the asymptotic covariance
matrix of the parameter estimates. In [26,27], Walach and Widrow proposed a
method to select an optimal identification criterion from the least mean fourth
(LMF) family criteria. In their approach, the optimal choice is determined by mini-
mizing a cost function which depends on the moments of the interfering noise. In
[28], Douglas and Meng utilized the calculus of variations method to solve the opti-
mal criterion among a large family of general error criteria. In [29], Al-Naffouri
and Sayed optimized the error nonlinearity (derivative of the general error crite-
rion) by optimizing the steady state performance. In [30], Pei and Tseng investi-
gated the least mean p-power (LMP) criterion. The fractional lower order moments
(FLOMs) of the error have also been used in adaptive identification in the presence
of impulse alpha-stable noises [31,32]. Other non-MSE criteria include the M-
estimation criterion [33], mixed norm criterion [34—36], risk-sensitive criterion
[37,38], high-order cumulant (HOC) criterion [39—42], and so on.

1.3 Information Theoretic Criteria

Information theory is a branch of statistics and applied mathematics, which is
exactly created to help studying the theoretical issues of optimally encoding mes-
sages according to their statistical structure, selecting transmission rates according
to the noise levels in the channel, and evaluating the minimal distortion in mes-
sages [43]. Information theory was first developed by Claude E. Shannon to find
fundamental limits on signal processing operations like compressing data and on
reliably storing and communicating data [44]. After the pioneering work of
Shannon, information theory found applications in many scientific areas, including
physics, statistics, cryptography, biology, quantum computing, and so on.
Moreover, information theoretic measures (entropy, divergence, mutual informa-
tion, etc.) and principles (e.g., the principle of maximum entropy) were widely
used in engineering areas, such as signal processing, machine learning, and other



