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Which Which

Banach spaces orthonormal systems
can be distinguished can be distinguished
with the help of with the help of
orthonormal systems? Banach spaces?

Introduction

The main goal of functional analysis is to provide powerful tools for
a unified treatment of differential and integral equations, integral trans-
forms, expansions and approximations of functions, and various other
topics. A basic idea consists in extending classical results about real or
complex functions to operators acting between topological linear spaces.
Another important goal is the classification of objects, like spaces and
operators. Luckily, these goals, the practical and the theoretical, are
closely related to each other.

A significant trend in Banach space theory is the search for numerical
parameters that can be used to quantify special properties. Certainly,
everybody would agree that Hilbert spaces are the most beautiful among
all Banach spaces. Thus it is important to decide whether a given
Banach space admits an equivalent norm induced by an inner product.
If so, this space is called Hilbertian. If such renormings do not exist,
then we may ask for a measure of non-Hilbertness. To what extent is
the sequence space l4 closer to I than l1g927

We illustrate our point of view by asking whether Bessel’s inequality
also holds for functions f with values in a Banach space X. Do we have

é 2\ 1/2 L 12
1 2
(E ) < (5 / TR RN

As observed by S. Bochner in 1933, this is not so in general. Later, it
became clear that the validity of (b), even if it is only true for some
fixed n > 2, characterizes Hilbert spaces isometrically; see [AMI, p. 51].
An isomorphic analogue of this criterion was established by S. Kwapien
in 1972. He showed that X is Hilbertian if and only if there exists a

constant ¢ > 1 such that
2\ 1/2 1 +n 1/2
) <o(3 [Ir@IrE)" ®

(X

for all square integrable X-valued functions f and n=1,2,.... Now it

+n
% / F(2) exp(—ikt) dt

+x
% / 7(2) exp(—ikt) dt

1



2 Introduction

is only a minor step to fix n and ask for the least constant ¢ > 1 such
that (B) holds in a given Banach space X. Denote, for the moment, this
quantity by ¢,,(X). Then we have ¢,(X) < y/n and

@, (1) <712 for 1 <r < oo;

see p. 23 for the definition of <. This observation suggests the following:
With every exponent 0<A<1/2 we associate the class F consisting of
all Banach spaces X such that ¢,(X) < n*. Then I, € Fy\Fx_, for
A=|1/r—1/2|>e>0. Thus F) strictly increases with A, and we have
obtained a useful classification of Banach spaces. Remember that, by
Kwapien’s criterion, Fg is the class of all Hilbertian Banach spaces.

Of course, we may wonder what happens when the trigonometric
system is replaced by any other orthonormal system, complete or not.
Important examples are Haar and Walsh functions, on the one hand,
and Rademacher functions and Gaussian random variables, on the other
hand.

We also mention that there are many different ways to obtain quan-
tities similar to ¢, (X). For instance, given two orthonormal systems
A, =(ay,...,a,) and B, = (by,...,by,) in Hilbert spaces Lo(M, 1) and
Lo(N,v), respectively, we can look for the least constant ¢>1 such that

n 2 1/2 n 2 1/2
( / Z Zibi(t) du(t)) < c(/ Z Trak(s) du(s)) ;
N k=1 M k=1

where z,, ..., Z, range over a Banach space X. An obvious modification
allows us to extend this definition even to (bounded linear) operators
acting from a Banach space X into a Banach space Y.

The asymptotic behaviour of the sequence (¢,,(X)) is invariant under
isomorphisms. However, there are non-isomorphic Banach spaces X and
Y such that ¢, (X) < ¢,(Y). For example, ¢, (I ®l2) < ¢, (). Thus
we may ask which differences between X and Y are realized by ¢,,.
Roughly speaking, ¢, (X) is determined by the ‘worst’ n-dimensional
subspace of X, where badness means large deviation from [7. More
generally, we may say that ¢, (X) only depends on the collection of all
n-dimensional subspaces, but neither on their position inside X nor on
how often a specific subspace occurs.

In this book, we present a theory of orthonormal expansions with
vector-valued coefficients and describe its interplay with Banach space
geometry. Many results were obtained by straightforward extension of
those concerned with Rademacher functions and Gaussian random vari-
ables. However, we hope that our general view yields more insight even




Introduction 3

into such well-known concepts as type and cotype of Banach spaces,
B-convexity, superreflexivity, the vector-valued Fourier transform, the
vector-valued Hilbert transform and the unconditionality property for
martingale differences (UMD).

It is our hope that this treatise will be read not only by an esoteric
group of specialists, but also by some graduate students interested in
functional analysis. We have included many unsolved problems which
show that there remains something to do for the future. Large parts
of the presentation should be understandable with a basic knowledge in
Banach space theory together with an elementary background in real
analysis, probability and algebra. Exceptions prove the rule!

The proofs in this treatise require techniques from the fields just men-
tioned. Besides classical inequalities, we use various properties of spe-
cial functions. Clearly, harmonic analysis serves as the basic pattern.
It will turn out that orthonormal systems consisting of characters on
compact Abelian groups possess many advantages because of the un-
derlying algebraic structure. Another important feature is the use of
probabilistic concepts, like random variables and martingales. In the
theory of superreflexivity we employ Ramsey’s theorem from combina-
torics. Ultraproducts will prove to be an indispensable tool. Further
key-words are: interpolation, extrapolation and averaging. Last but not
least, we present many tricks and non-straightforward ideas. Of course,
lengthy manipulations cannot be avoided. However, we have done our
best to make things as easy as possible, and we hope the final result
provides a colourful picture.

Basically,. we have adopted standard notation and terminology from
Banach space theory. It may nevertheless happen that experts well-
acquainted with some special results are shocked by the symbols
o(T| B, An) and 8(T|B,, Ay) or even g (T|B,, Ay) and 6)(T|B,, Ay).
Hopefully, this displeasure will gradually be replaced by the understand-
ing that our lengthy notation is indeed quite economical and suggestive.
Of course, it seems better at first glance to denote the Rademacher co-
type q constant computed with n vectors simply by C,(X, n) or Cg n(X),
as done in [DIE*a, p. 290], [MIL*, p. 51] and [TOM, p. 188]. However,
there occur similar quantities related to Gaussian random variables, var-
ious trigonometric functions, etc. Thus in the traditional way, we would
run out of letters very quickly. To help the patient reader, a fairly com-
plete list of symbols is included, pp. 514-522.
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This chapter provides some elementary facts from the theory of Banach
spaces and the basic terminology. For more information, we recommend
the following books:

Beauzamy............... Introduction to Banach spaces and their
geometry [BEA 2],

DAY s 344 me s wv o ms s us o Normed linear spaces [DAY],

Dunford/Schwartz....... Linear operators, vol. I [DUN*1],

Lindenstrauss/Tzafriri. . . Classical Banach spaces, vols. I and II
[LIN*1, LIN*2].

0.1 Banach spaces and operators

0.1.1 Throughout this book, X, Y and Z denote Banach spaces over
K (synonym of the real field R or the complex field C). Whenever it is
necessary to indicate that z is an element of the Banach space X, then
we denote its norm by ||z|X||.

The closed unit ball of X is defined by Ux:={z€ X : ||z|| < 1}.

CONVENTION. Unless otherwise stated, all Banach spaces under consid-
eration are assumed to be different from {o}, where o denotes the zero
element.

0.1.2 We write L for the class of all Banach spaces.

0.1.3 The dual Banach space X' consists of all (bounded linear)
functionals z’ : X — K. The value of z’ at z€ X is denoted by (z,z’),
and we let

||| := sup{| (z, ) | : z € Ux}.

Moreover, Uy stands for the closed unit ball of X’.

4



0.1 Banach spaces and operators 5

When dealing with duals of higher order, besides (z,z’) we use the
symbols (z”,z') and (z”,z"’). That is, z€ X and z” € X" are placed
left, while '€ X’ and z"/€ X"’ are placed right.

0.1.4 Throughout this book, T' denotes a (bounded linear) operator
from X into Y. The null space and the range of T are defined by

N({T)={z€X : Tz=0} and M(T):={Tze€Y :z€X},
respectively. The operator norm is given by
|T|| := sup{||Tz| : =€ Ux}.

Whenever it is advisable to indicate that the operator T" acts from X
into Y, then we use the more precise notation ||T: X — Y||. We denote
the identity map of X by Ix. If || T'|| <1, then T is called a contraction.

The Banach space of all operators from X into Y is denoted by
£(X,Y). To simplify matters, we write £(X) instead of £(X, X).

0.1.5 Let £ denote the class of all operators acting between arbi-
trary Banach spaces. This means that

£=JexY),
XY

where X and Y range over L.
0.1.6 For TeL(X,Y), the dual operator 7€ £(Y’, X') is defined by
(z,T'y') = (Tz,y’) forze X andy’ €Y.

0.1.7 For fixed z€ X, the rule
Kxz : 2’ — (z,2)

defines a functional on X’. In this way, we obtain the natural embed-
ding Kx from X into X", which is a linear isometry. Note that the
diagram

X T Y
le le
XII Y/I
TI’

commutes for every operator T€ £(X,Y).
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0.1.8 For a proof of the following classical result, we refer the reader
to [DEF*, p. 73] and [PIE 2, p. 383].

HELLY’S LEMMA. Letz"€X". Then, givenz!,...,z,eX’
and € > 0, there exists € X such that

lzll < A +e)|z"|| and (z,z))=(z",z}) fork=1,...,n.

0.1.9 Anoperator JEL(X,Y) is an injection if there exists a constant
¢ > 0 such that

||[Jz|| > c|lz|| for all z € X.

A metric injection is defined by the property that ||Jz| = ||z]|.

An operator Qe £(X,Y) is a surjection if Q(X) =Y. By definition,
a metric surjection Q€ £(X,Y) maps the open unit ball of X onto
the open unit ball of Y; see [PIE 2, pp. 26-28].

By a subspace M of a Banach space X we always mean a closed linear
subset. The canonical (metric) injection from M into X is denoted by
Ji. If N is a subspace of X, then Q¥ stands for the canonical (metric)
surjection from X onto the quotient space X/N.

An operator P€ £(X) is called a projection if P2 = P. Subspaces
M of X that can be obtained as the range of a projection are said to be
complemented.

0.1.10 A real or complex Hilbert space with the inner product (-,-)
will always be denoted by H or K.

0.1.11 With every element y€ H we associate the functional
7:z—(z,y).

By the Riesz representation theorem, the map Cy : y — ¥ is a conjugate-
linear isometry from H onto H'.

0.1.12 Let T€£(H, K), where H and K are Hilbert spaces. Then the
adjoint operator T*e€£(K, H) is defined by

(z,T*y)=(Tz,y) forze H andy€ K.

This means that T*= Cy'T'Ck.
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0.2 Finite dimensional spaces and operators

0.2.1 The dimension of a finite dimensional linear space M is

denoted by dim(M). Given elements z1,...,Z, in any linear space X,
then dim(z,,...,z,] stands for the dimension of span(z,...,z,), the
linear span.

A subspace N of a linear space X is said to be finite codimensional
if cod(N) := dim(X/N) is finite.

0.2.2 For a Banach space X the collection of all subspaces M with
dim(M) < n is denoted by DIM<,(X). Analogously, COD<,(X) stands
for the collection of all subspaces N with cod(IN) < n. We write

DIM(X) := CJ DIM<,(X) and COD(X):= [j COD<,(X).

n=0 n=0

0.2.3 The Banach—Mazur distance of n-dimensional Banach spaces
X and Y is defined by

d(X,Y) =i { |T| |ITY| : T € £(X,Y), bijection}.

We have a multiplicative triangle inequality d(X, Z) < d(X,Y)d(Y, 2).
Moreover, X and Y are isometric if and only if d(X,Y) =1.

Whenever there exist T € £(X,Y) and 0 < ¢ < 1 such that
IT2)l - ll2ll| < cllzl for ze X,
then ||Tz|| < (1+c¢)||z|| and (1—c)||z| < ||Tz||- Hence d(X,Y) < %

0.2.4 Without proof, we state an extremely important result; see [joh],
[PIE 2, p. 385] and [TOM, p. 54]. As usual, I7 denotes the n-dimensional
Hilbert space; see 0.3.2.

JOHN’S THEOREM. d(X,I%) < \/n whenever dim(X) =n.
0.2.5 An operator T € £(X,Y) has finite rank if its range
M(T):={Tz:z € X}

is finite dimensional. Then we write rank(T") =dim(M(T')). The set of
all finite rank operators from X into Y is denoted by F(X,Y).



8 0 Preliminaries
0.3 Classical sequence spaces

0.3.1 Given any set I, by an [-tuple we mean a family of objects
indexed by i € I. The letter F always stands for a finite index set, and
|F| denotes its cardinality.

0.3.2 Let 1 <r < 0o, and consider any I-tuple of Banach spaces X;.
Then [I,(I), X;] consists of all I-tuples (z;) with z; € X; for which

el @i= (X ledr) "
I

is finite. In the limiting case r = oo, the I-tuples (z;) are assumed to be
bounded, and we let

(@)oo (Ml := sup ll:]-

To simplify matters, we write [l,, X;] and [I?, X;] when the index set I
is {1,2,...} and {1,...,n}, respectively. In the scalar-valued case, the
usual symbols [.(I), I, and I will be used. The Banach space [l-(I), X;]
is called the l.(I)-sum of (X;). If X; = X for all i € I, we refer to
[I-(I), X] as the I,(I)-multiple of X. In this case, the underlying norm
will sometimes be denoted by the more precise symbol ||(z;)|[l~(I), X]]|-
0.3.3 The natural injection J¥ from X into X := [I,(I), X;] takes
z € Xy into the I-tuple (z;) with zx = = and z; = o for 7 # k. The
natural surjection QF from X onto X is defined by Q¥ (z;) := z.

0.3.4 Let (T;) be any I-tuple of operators T; € £(X;,Y;). Then the

rule
(D), T3] : (z:) — (Tizs)

yields a diagonal operator from [I,(I), X;] into [I.(I), ;] provided that
1-@), Ti[| = sup I T
is finite. With the natural injections and surjections introduced above,
we have
T; = Q}’[l,.(]l),T,-]JjX whenever j € I.

The operators

Bq : (zx) — ((1+log k)™ “zk),

Co : (zi) — (K™ %zx),

Dq : (zx) — (27%ay),

defined for (zx) € [lg,l:‘;:] and a > 0 will play an important role as
examples; see 1.2.12.



