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torics (or counting) and (2) discrete methods (that appeal to the fi ature of certain
problems). One reason for this is the abundance of applications of these mathematical
disciplines in computer science and operations research. Discrete methods and com-
binatorial reasoning underly the areas of data structures, as well as computational
complexity and the analysis of algorithms. Consequently, many majors in computer
science are also required to take courses in these disciplines. In addition to applications
in computer science, one also finds applications in engineering and the physical and
life sciences, and in statistics and the social sciences. Therefore the area of discrete
mathematics provides valuable training for students in areas besides mathematics and
computer science.

The objective of this book is to provide an introductory survey in both combina-
torial and discrete mathematics. Since it is intended for the beginning student, there are
a great number of examples with detailed explanations. (Each example is separately
numbered and an open square is used to denote the end of each example.) In addition,
wherever proofs are given, they too are presented with sufficient detail.

The text strives to accomplish the following goals:

1. To introduce the student at the sophomore-junior level, if not earlier, to the topics
and techniques of combinatorial reasoning and discrete methods. Problems in
counting, or enumeration, require a careful analysis of structure (e. g., whether or
not order is important) and logical possibilities. There may even be a question of
existence for some situations. Following such a careful analysis, we shall often
find that the solution of a problem requires simple techniques for counting the
possible outcomes that evolve from the breakdown of the given problem into
smaller subproblems.

2. To introduce a wide variety of applications. In this regard, where structures from
abstract algebra are required, only the basic theory needed for the application is
developed. Furthermore, the solutions of some applications lend themselves to
iterative procedures that lead to specific algorithms. The algorithmic approach to
the solution of problems is fundamental in discrete mathematics. This approach
reinforces the close ties between this discipline and the area of computer science.

3. To develop the mathematical maturity of the student through the study of an area
that is so different from the calculus. Here, for example, there is the opportunity
to establish results by counting a certain collection of objects in more than one way.
This provides what are called combinatorial identities and introduces a novel proof
technique. Proofs by mathematical induction are also used throughout the text,
following their development in Chapter 6. Prior to Chapter 6 the ideas behind
induction appear in certain recursive definitions and examples.
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With regard to proofs in general, an attempt has been made to motivate
theorems from observations on specific examples. In addition, whenever a finite
situation provides a result that is not true for the infinite case, this situation is
singled out for attention. Closed squares are used in the text to indicate the end of
a proof. Proofs that are extremely long and/or rather special in nature are omitted.
However, for the small number of proofs that are omitted, references are supplied
for the reader interested in seeing the validation of these results. (The amount of
emphasis placed on proofs will depend on the goals of the individual instructor and
his or her student audience.)

4. To present an adequate survey of topics for the computer science student who will
be taking more advanced courses in data structures and algorithm analysis. The
coverage here on groups, rings, and fields will also provide an applied introduction
for mathematics majors who wish to continue their study of abstract algebra.

The prerequisites needed for this book are primarily a sound background in high
school algebra and an interest in attacking and solving a variety of problems. No
particular programming ability is assumed. There are a few programs that appear in the
text, but these are designed to reinforce particular examples. Such results may be
skipped without any loss of continuity. With regard to calculus, we shall mention later
in this preface its extent in Chapters 10 and 11.

My major motivation for writing this book is the encouragement I've received over
the past seven years from my students and colleagues. This text reflects both my
interests and those of my students, as well as the current recommendations of the
Committee on the Undergraduate Program in Mathematics and the Association of
Computing Machinery.

Since the areas of discrete and combinatorial mathematics are fairly new to
the undergraduate curriculum there are many opinions as to which topics should be
included in such courses. As each instructor and student will have different interests and
needs, the coverage here is rather broad, as a survey course mandates. Yet there are
many topics that some readers may feel should also be covered. Furthermore, there may
be some differences of opinion with regard to the order in which the topics included
here are presented. The order here rests upon my conviction that enumeration can
reinforce the study of structure and vice versa.

Despite the interweaving of structure and enumeration, the chapters following
Chapter 6 have been developed as independently as possible. The first six chapters
form the underlying core of the text and provide enough material for a one-quarter or
one-semester course. A second course that emphasizes combinatorics should include
Chapters 7, 10, 11, and sections 1, 2, 3, 9, 10, 11 of Chapter 12. (In Chapter 10 some
results from calculus are used; namely, the differentiation of algebraic functions, and
partial fraction decompositions. For those who wish to skip this chapter, the first three
sections of Chapter 11 can still be covered.) For a course in the role of discrete
structures in computer science, the material in Chapters 9, 14, 15, 16, and sections 1-8
of Chapter 12 provides applications on switching functions and coding theory, and an
introduction to graph theory and trees, and their role in optimization. Finally, a course
in applied algebra can be developed after Chapter 6, and this should include coverage
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of Chapters 8, 9, 12, and 13. Other possible courses can be developed by consideration
of the following dependency table.

Chapter Dependence on Prior Chapters

1 No dependence

2 1

3 1,2

4 1,2,3

5 1,2,3,4

6 Minor dependence on 1, 2, 3

7 1,2

8 3, 5, 6 (The Euler ¢ function is used here. This function is estab-
lished in Section 7.1 but the result can be used in Chapter 8 without
doing Chapter 7.)

9 2,3,5

10 1,2

11 1,2, 10

12 1,2,3,5,6

13 2,3,5,6,8

14 1, 2, 3, 6 (Although some graph theoretic ideas are mentioned in
Chapters 4, 5, 7, and 9, this chapter is developed with no de-
pendence on these earlier results.)

15 1,2,3,6, 14

16 2, 14, 15.

In regard to the dependence of one section of a chapter on earlier sections, one
should anticipate some dependence in the section exercises. Also, at the end of each
chapter is a set of miscellaneous exercises where ideas from several chapters may be
needed for the solutions. The overall role of the exercises is a key one. The exercises
at the end of each section are designed to: (1) review the material in that section,
(2) tie together ideas from earlier sections of the chapter; and (3) develop further
concepts related to the material in the section. A few exercises call for computer
programs to implement a given example or algorithm. These are designed for students
with a minimal amount of programming experience. Answers are provided at the back
of the text for almost all of the odd-numbered exercises.

In addition to the miscellaneous exercises, each chapter is concluded with a
summary and historical review of the major ideas covered in that chapter. This should
provide an overview of the development of the concepts in the chapter and provide
information on further applications. A list of references for further reading also appears
at the end of each chapter.

If space permitted, I would mention each of the students who took courses in
discrete mathematics and combinatorics from me and suggested putting my class notes
into a book. To those students who worked from the mimeographed version of this book
I owe many thanks for finding mistakes and suggesting ways to improve the exposition.
Most helpful in this category were Paul Griffith, Meredith Vannauker, Paul Barloon,
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Byron Bishop, Lee Beckham, Brett Hunsaker, Tom Vanderlaan, Michael Bryan,
Charles Wilson, and Richard Nichols. I thank Lawrence Alldredge and Martin Rivers
for reviewing several chapters of the text, and Lawrence Alldredge, Barry Farbrother,
Paul Hogan, Dennis Lewis, and Charles Kyker for their enlightening comments on some
of the programs and applications mentioned in the text. I gratefully acknowledge the
persistent enthusiasm and optimism of my editors, Wayne Yuhasz and Jeff Pepper, as
well as Mary Crittenden, Herb Merritt, and Maria Szmauz, among other members of
the Addison-Wesley staff who assisted in the fulfillment of this project. The overall
reviewers — Robert Crawford of Western Kentucky University, Carl Eckberg of San
Diego State University, and especially Douglas Shier of Clemson University — deserve
a special note of thanks for their very thorough work. I am also indebted to my
colleagues, John Kinney, Gary Sherman, and especially Alfred Schmidt, for their
encouragement throughout the two years spent on writing this book. I believe they are
somewhat responsible for a great deal of what is of value here. However, if there is one
person to whom I owe the greatest note of thanks, it is definitely the ever-patient and
encouraging Mary Lou McCullough who typed and retyped and . . . to bring out the best
in the manuscript. Alas, any remaining errors, ambiguities, or misleading results rest
upon my shoulders alone.

Terre Haute, Indiana R.P.G.
December 1984
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FUNDAMENTAL PRINCIPLES OF COUNTING

Enumeration, or counting, may strike one as an obvious process that a student learns
when first studying arithmetic. But then, it seems, that very little attention is given to
any further development in counting as the student turns to “more difficult” areas in
mathematics, such as algebra, geometry, trigonometry, and calculus. Consequently,
this first chapter should provide some warning as to the seriousness and difficulty of
“mere” counting. Enumeration does not end with arithmetic; there is quite a bit more
to it. And as we enter this fascinating field of mathematics, we shall come upon many
problems that are very simple to state but somewhat “sticky” to solve.

Beware of formulas! Without an analysis of each problem, a mere knowledge of
formulas will prove next to useless. Instead, welcome the challenge to solve problems
different from routine problems or past experiences. Seek solutions based on your own
scrutiny, regardless of whether it follows what the author provides. There are often
several ways to solve a given problem.

THE RULES OF SUM AND PRODUCT

Our study of discrete and combinatorial mathematics begins with two basic principles
of counting: the rules of sum and product. These appear quite simple in statement and
initial application. In analyzing more complicated problems, one often is able to
decompose such problems into parts that can be handled using these basic principles.
We want to develop the ability to decompose such problems and piece together the
partial solutions to arrive at the final answer. This will be done by analyzing and solving
many diverse enumeration problems, with recognition of the principles being used in
the solutions. Our first principle of counting can be stated as follows.

The Rule of Sum: If a first task can be performed in m ways, while a second task
can be performed in n ways, and the two tasks cannot be performed simultaneously,
then performing either task can be accomplished in any of m + n ways.

Before demonstrating its use, we state here an observation that will be true through-
out the entire text: When we say that a particular occurrence, such as a first task, can
come about in m ways, these m ways are assumed to be distinct, unless a statement is
made to the contrary.

A college library has 40 textbooks on sociology and 50 textbooks dealing with anthro-
pology. By the rule of sum a student at this college can select among 40 + 50 = 90
textbooks in order to learn more about one of these two subjects. o

The rule can be extended beyond two tasks as long as no pair of them can occur
simultaneously. For instance, a computer science instructor who has, say, five intro-
ductory books each on APL, BASIC, FORTRAN and Pascal can select any one of these
20 to give to a student interested in learning a first programming language. O
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1.1 THE RULES OF SUM AND PRODUCT 3

The computer science instructor of Example 1.2 has two colleagues. One of these
colleagues has three textbooks on algorithm analysis, and the other has five such
textbooks. If n denotes the number of books this instructor can borrow on this
topic, then 5 = n = 8§, for here the colleagues may be in possession of copies of the
same textbook. o

With the rule of sum taken care of we now consider the following example, which
will introduce us to the rule of product.

In trying to reach a decision on plant expansion, an administrator assigns 12 of
her employees to two committees. Committee A consists of five members and is to
investigate possible favorable results from such an expansion. The other seven em-
ployees, committee B, will scrutinize possible unfavorable repercussions. Should the
administrator decide to speak to just one committee member before making her deci-
sion, then by the rule of sum there are 12 employees she can call upon for input.
However, in order to be a bit more unbiased, she decides to speak with a member of
committee A on Monday and then a member of committee B on Tuesday, before
reaching a decision. Using the following principle we find that she can speak with two
such employees in 5 X 7 = 35 ways. O

The Rule of Product: If a procedure can be broken down into first and second
stages, and if there are m possible outcomes for the first stage and n for the
second stage, then the total procedure can be carried out, in the designated order,
in mn ways.

This rule is sometimes referred to as the principle of choice.

The drama club of Central University is having tryouts for a spring play. With six men
and eight women auditioning for the leading male and female roles, by the rule of
product the director can cast his leading couple in 6 X 8 = 48 ways. ]

Here various extensions of the rule are illustrated by considering the manufacture of
license plates consisting of two letters followed by four digits.

a) If no letter or digit can be repeated, there are 26 X 25 X 10 X 9 X 8 X
7 = 3,276,000 different possible plates.

b) With repetitions of letters and digits allowed, we find 26 X 26 X 10 X 10 X
10 X 10 = 6,760,000 license plates possible.

¢) If repetitions are allowed, how many of the plates in part (b) have both letters
vowels (a, e, i, 0, u) and all digits even? (0 is an even integer.) m|

At times it is necessary to combine several different counting principles in the
solution of one problem. Here we find that both the rules of sum and product are

needed to attain the answer.



