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PREFACE

Some twenty years ago, it was only necessary to know about a dozen
statistical tests in order to be a practising statistician, and these were all
available in the few statistical textbooks that existed at that time. In recent
years the number of tests has grown tremendously and, while modern books
carry the more common tests, it is often quite difficult for a practising
statistician quickly to turn up a reference to some of the less used but none
the less important tests which are now in the literature. Accordingly, we have
attempted to collect together information on most commonly used tests which
are currently available and present it, together with a guide to further reading,
to make a useful reference book for both the applied statistician and the
everyday user of statistics. Naturally, any such compilation must omit some
tests through oversight, and the author would be very pleased to hear from
any reader about tests which they feel ought to have been included.

The work is divided into several sections. In the first we define a number of
terms used in carrying out statistical tests, we define the thinking behind
statistical testing and indicate how some of the tests can be linked together in
an investigation. In the second section we give examples of test procedures
and in the third we provide a list of all the 100 statistical tests. The fourth
section classifies the tests under a variety of headings. This became
necessary when we tried to arrange the tests in some logical sequence.
Many such logical sequences are available and, to meet the possible needs
of the reader, these cross-reference lists have been provided. The main part
of the work describes most commonly used tests currently available to the
working statistician. No attempts at proof are given, but an elementary
knowledge of statistics should be sufficient to allow the reader to carry out
the test. In every case the appropriate formulae are given and where
possible we have used schematic diagrams to preclude any ambiguities in
notation. Where there has been a conflict of notation between existing
textbooks, we have endeavoured to use the most commonly accepted
symbols. The next section provides a list of the statistical tables required
for the tests followed by the tables themselves, and the last section
provides references for further information.

Because we have brought together material which is spread over a large
number of sources, we feel that this work will provide a handy reference
source, not only for practising statisticians but also for teachers and students
of statistics. We feel that no one can remember details of all the tests described
here. We have tried to provide not only a memory jogger but also a first
reference point for anyone coming across a particular test with which he or
she is unfamiliar.

Lucidity of style and simplicity of expression have been our twin objectives,
and every effort has been made to avoid errors. Constructive criticism and
suggestions will help us in improving the book.



COMMON SYMBOLS

Each test or method may have its own terminology and symbols but the
following are commonly used by all statisticians.

number of observations (sample size)
number of samples (each having n elements)

>§:

level of significance

degrees of freedom

standard deviation (population)
standard deviation (sample)
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population mean

sample mean

population correlation coefficient
sample correlation coefficient

-
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standard normal deviate

N
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INTRODUCTION TO STATISTICAL TESTING

Having collected together a number of tests, it is necessary to consider what
can be tested, and we include here some very general remarks about the
general problem of hypothesis testing. Students regard this topic as one full of
pitfalls for the unwary, and even teachers and experienced statisticians have
been known to misinterpret the conclusions of their analysis.

Broadly speaking there are two basic concepts to grasp before com-
mencing. First, the tests are designed neither to prove nor to disprove
hypotheses. We never set out to prove anything; our aim is to show that an
idea is untenable as it leads to an unsatisfactorily small probability. Secondly,
the hypothesis we are trying to disprove is always chosen to be the one in
which there is no change; for example, there is no difference between the two
population means, between the two samples, etc. This is why it is usually
referred to as the null hypothesis, H|,. If these concepts were firmly held in
mind, we believe that the subject of hypothesis testing would lose a lot of its
mystique. (However, it is only fair to point out that some hypotheses are not
concerned with such matters.)

To describe the process of hypothesis testing we feel that we cannot do
better than follow the five-step method introduced by Neave (1976a):

Step 1 Formulate the practical problem in terms of hypotheses. This can
be difficult in some cases. We should first concentrate on what is called the
alternative hypothesis, H,, since this is the more important from the practical
point of view. This should express the range of situations that we wish the test
to be able to diagnose. In this sense, a positive test can indicate that we should
take action of some kind. In fact, a better name for the alternative hypothesis
would be the action hypothesis. Once this is fixed it should be obvious whether
we carry out a one- or two-tailed test.

The null hypothesis needs to be very simple and represents the status quo,
i.e. there is no difference between the processes being tested. It is basically a
standard or control with which the evidence pointing to the alternative can be
compared.

Step 2 Calculate a statistic (7"), a function purely of the data. All
good test statistics should have two properties: (a) they should tend to
behave differently when H,, is true from when H, is true; and (b) their
probability distribution should be calculable under the assumption that
H, is true. It is also desirable that tables of this probability distribution
should exist.

Step 3 Choose a critical region. We must be able to decide on the kind of
values of T" which will most strongly point to H, being true rather than H,
being true. Critical regions can be of three types: right-sided, so that we reject
H, if the test statistic is greater than or equal to some (right) critical value; left-
sided, so that we reject H,, if the test statistic is less than or equal to some (left)
critical value; both-sided, so that we reject H, if the test statistic is either
greater than or equal to the right critical value or less than or equal to the left
critical value. A value of T lying in a suitably defined critical region will lead
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us to reject Hy in favour of H; if T lies outside the critical region we do not
reject H,. We should never conclude by accepting H,,.

Step4 Decide the size of the critical region. This involves specifying how
great a risk we are prepared to run of coming to an incorrect conclusion. We
define the significance level or size of the test, which we denote by «, as the risk
we are prepared to take in rejecting H, when it is in fact true. We refer to this
as an error of the first type or a Type I error. We usually set « to between 1 and
10 per cent, depending on the severity of the consequences of making such an
error.

We also have to contend with the possibility of not rejecting H, when it is in
fact false and H, is true. This is an error of the second type or Type II error,
and the probability of this occurring is denoted by 3.

Thus in testing any statistical hypothesis, there are four possible situations
which determine whether our decision is correct or in error. These situations
are illustrated as follows:

Situation

H, is true H, is false

. H, is not rejected | Correct decision | Type II error
Conclusion

H, is rejected Type I error Correct decision

Step 5 Many textbooks stop after step 4, but it is instructive to consider
just where in the critical region the calculated value of 7" lies. If it lies close to
the boundary of the critical region we may say that there is some evidence that
H,, should be rejected, whereas if it is at the other end of the region we would
conclude there was considerable evidence. In other words, the actual
significance level of T can provide useful information beyond the fact that
T lies in the critical region.

In general, the statistical test provides information from which we can judge
the significance of the increase (or decrease) in any result. If our conclusion
shows that the increase is not significant then it will be necessary to confirm
that the experiment had a fair chance of establishing an increase had there
been one present to establish.

In order to do this we generally turn to the power function of the test, which
is usually computed before the experiment is performed, so that if it is
insufficiently powerful then the design can be changed. The power function
is the probability of detecting a genuine increase underlying the observed
increase in the result, plotted as a function of the genuine increase, and
therefore the experimental design must be chosen so that the probability of
detecting the increase is high. Also the choice among several possible designs
should be made in favour of the experiment with the highest power. For a
given experiment testing a specific hypothesis, the power of the test is given by
1— 4.

Having discussed the importance of the power function in statistical tests
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we would now like to introduce the concept of robustness. The term ‘robust’
was first introduced in 1953 to denote a statistical procedure which is
insensitive to departures from the assumptions underlying the model on
which it is based. Such procedures are in common use, and several studies of
robustness have been carried out in the field of ‘analysis of variance’. The
assumptions usually associated with analysis of variance are that the errors
in the measurements (a) are normally distributed, (b) are statistically
independent and (c) have equal variances.

Most of the parametric tests considered in this book have made the
assumption that the populations involved have normal distributions. There-
fore a test should only be carried out when the normality assumption is not
violated. It is also a necessary part of the test to check the effect of applying
these tests when the assumption of normality is violated.

In parametric tests the probability distribution of the test statistic under
the null hypothesis can only be calculated by an additional assumption on the
frequency distribution of the population. If this assumption is not true then
the test loses its validity. However, in some cases the deviation of the
assumption has only a minor influence on the statistical test, indicating a
robust procedure. A parametric test also offers greater discrimination than
the corresponding distribution-free test.

For the non-parametric test no assumption has to be made regarding the
frequency distribution and therefore one can use estimates for the probability
that any observation is greater than a predetermined value.

Neave (1976b) points out that it was the second constraint in step 2, namely
that the probability distribution of the test statistic should be calculable,
which led to the growth of the number of non-parametric tests. An
inappropriate assumption of normality had often to be built into the tests.
In fact, when comparing two samples, we need only look at the relative
ranking of the sample members. In this way under H,, all the rank sequences
are equally likely to occur, and so it became possible to generate any required
significance level comparatively easily.

Two simple tests based on this procedure are the Wald—Wolfowitz number
of runs test and the median test proposed by Mood, but these are both low in
power. The Kolmogorov—Smirnov test has higher power but is more difficult
to execute. A test which is extremely powerful and yet still comparatively easy
to use is the Wilcoxon—-Mann—-Whitney test. Many others are described in
later pages of this book.
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EXAMPLES OF TEST PROCEDURES

Test1 Z-test for a population mean (variance known)

Hypotheses and 1. Hy: p=py
alternatives H: p+#
2. Hy:p=py
Hy: > pg
Py X = 1o
Test statist =
est statistics -

n is sample size
X is sample mean
o is population standard deviation

When used When the population variance o° is known and
the population distribution is normal.
Critical region Using o = 0.05 [see Table 1]
1.
0.025 0.025
-1.96 1.96
2.
0.05
1.64
Data Hy: pg = 4.0
n=9,x=46
o=1.0
5L Z=138
Conclusion 1. Do not reject H,, [see Table 1].

2. Reject Hy,.
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Test3 Z-test for two population means (variances known and

unequal)

Hypotheses and
alternatives

Test statistics

When used

Critical region

Data

Conclusion

—

Hy: py — pp = py
Hy:py — py # po
Hy: py — pa = po
Hy:py—p2 >

When the variances of both populations, o7
and o3, are known. Populations are normally
distributed.

Using a = 0.05 [see Table 1]

0.025

1.64

Hy:py —pp =0
n=9,n =16
x=12,%=17
o} =1, o3 =4

S Z=-0.832

Do not reject Hy.
Do not reject Hy.



EXAMPLES OF TEST PROCEDURES

Test 7 t-test for a population mean (variance unknown)

Hypotheses and
alternatives

Test statistics

When used

Critical region and
degrees of freedom

Data

Conclusion

1

2.

Hy: ppo= pg
Hy: p+# po
Hy: po= py
Hy: > po
7 = X — Ho
~s//n
where

2 Z (x—%)°

5=
n—1

If o is not known and the estimate s° of o” is
based on a small sample (i.e. » < 20) and a
normal population.

0.025
10025 th—1;0.025
th—1:0.05
Hy: py = 4.0
n=9 x=23.1
s=1.0
Sor=-=27
1g.0.025 = +2.306 [See Table 2]
Reject H,.

Ig.0.0s = —1.860 (left-hand side) [see Table 2].
Reject Hy.
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Test 8 t-test for two population means (variance unknown

but equal)

Hypotheses and
alternatives

Test statistics

When used

Critical region and
degrees of freedom

Data

Conclusion

Hy: py — o = o
Hy:py — po # o
Hy: py — pp = pig
Hy: oy — py >

(= x) = (= )
Grtw)
S| ——+—
n Hy

5> (m — l)sf + (ny — l)sg
s = ‘
n +n—2

where

Given two samples from normal populations
. . 2
with equal variances o~.

DF=n;+n,—2

0.025 0.025

_tn‘ +n,—2:0.025 tn‘ +n,—2;0.025

Y;

Ho: py — pp =0
n, = 16,n, =16
X =50,x,=4
s=2.0
1= 1414
f30:0.025 = £2.042 [see Table 2].
Do not reject H,.

130.0.05 = 1.697 [SeC Table 2]
Do not reject H,.

tn, +n,—2;0.05
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Test 10 Method of paired comparisons

Hypotheses and 1.
alternatives

2.
Test statistics
When used
Critical region and L.

degrees of freedom

2
Data
Conclusion 1.
2.

H(): Ha =0
HI: /I'd7é0
H(): Ha :O
Hl: Ha > 0
’_H—/l,(/
s/v/n

where d; = x; — y,, the difference in the n paired
observations.

When an experiment is arranged so that each
observation in one sample can be ‘paired’
with a value from the second sample and the
populations are normally distributed.

0.025

~th—1;0.025 th—1;0.025

0.05
th—1:0.05

n=16,d=1.0
s=1.0
S t=4.0
15.0.025 = +2.131 [see Table 2]
Reject H,.

5.005 = 1.753 [see Table 2]
Reject H.
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Test 15 x>-test for a population variance

Hypothesis and 1. Hy o' =03
alternatives H,: o’ £ op
A 2
2. Hy: 07 =o0j
X 2
H: 0" > o}

) —1)s’

Test statistics X = u

%%
When used Given a sample from a normal population with

unknown variance.

Critical region and l.
degrees of freedom

XA- 10975 XA- 10025
2
Xﬁ—toos
Data Hy: o° =4.0
n=17,ss=7.0
SoxE =280
Conclusion 1. ﬁ(,:oms = 28.85 [see Table 5].

.. Do not reject H,.
2. Xis00s = 26.30 [see Table 5].
.. Reject H,).



