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Preface

First-generation semiconductors could not be properly termed “doped” —
they were simply very impure. Uncontrolled impurities hindered the discovery
of physical laws, baffling researchers and evoking pessimism and derision in
advocates of the burgeoning “pure” physical disciplines. The eventual banish-
ment of the “dirt” heralded a new era in semiconductor physics, an era that
had “purity” as its motto. It was this era that yielded the successes of the
1950s and brought about a new technology of “semiconductor electronics”.
Experiments with pure crystals provided a powerful stimulus to the develop-
ment of semiconductor theory. New methods and theories were developed and
tested: the effective-mass method for complex bands, the theory of impurity
states, and the theory of kinetic phenomena.

These developments constitute what is now known as semiconductor phys-
ics. In the last fifteen years, however, there has been a noticeable shift towards
impure semiconductors — a shift which came about because it is precisely the
impurities that are essential to a number of major semiconductor devices.
Technology needs impure semiconductors, which unlike the first-generation
items, are termed “doped” rather than “impure” to indicate that the impurity
levels can now be controlled to a certain extent.

New problems have arisen in the theory of the electronic states of doped
semiconductors. They concern electrons located not in an ordered field of
crystal atoms, but in the chaotic field of impurities, and the potential energy
of the latter is by no means small. At low temperatures a doped semiconduc-
tor crystal becomes a disordered system, which in its general characteristics
resembles an amorphous system. This is true for both lightly and heavily
doped semiconductors: the lighter the doping, the lower the temperature at
which these characteristics are exhibited.

The aim of this book is to present in logical fashion the theory of electron-
ic states and conduction in doped semiconductors at low temperatures, that is,
in the region where the properties of the electronic states differ most from
those of Bloch waves.

Depending on the doping, the electronic states of a semiconductor at zero
temperature may be localized or delocalized. An important advance in the
theory of disordered systems was the so-called Anderson theorem, which
posits the existence of strictly localized states under certain conditions. A dis-
cussion of this question (Chap. 2) begins our exposition of the theory of elec-
tronic states, which differs from that for ideal crystals in that it must account

-—



VI Preface

for electron-electron interaction even at the lowest electron concentrations.
To this end, a nonlinear screening theory was developed, based on the self-
consistent field method (Sect. 3.4). This method does not, however, work in
the vicinity of the Fermi level, where the density of states has interesting and
peculiar features (Chap. 10).

If the Fermi level is in the localized-state region, then conduction is due to
electron hopping and is exponentially dependent on temperature and the im-
purity concentration. The hopping conduction phenomenon was identified
long ago, but several major advances have taken place in the last decade. A
theory was developed which describes the temperature, concentration and
magnetic field dependences quantitatively. This theory is based on a new
mathematical discipline known as “percolation theory”. Today, the percola-
tion method is as essential to the study of low-temperature conduction as the
kinetic equation method is for band conduction; the term “percolation level”
is as frequent in the relevant literature as “relaxation time”. Good reviews of
the percolation theory do exist — we cite many in Chap. 5 — but these were
written relatively long ago and are inappropriate to the study of hopping
conduction. For this reason we found it necessary to write a separate chapter
detailing the main tenets of percolation theory (Chap. 5), replete with bibliog-
raphy on the topic.

In all chapters devoted to hopping conduction there is a thorough compa-
rison of theory and experiment, a comparison that we find, on the whole,
favorable. We have tried to point out discrepancies and theoretical problems
that in our view remain unsolved.

Although the book is devoted to crystallic semiconductors, many of the
ideas and methods also apply to amorphous semiconductors, so much so that
“amorphous digressions” are an integral part of the text. Occasionally (see
Chap. 9) we use experimental data on amorphous semiconductors to support
certain concepts.

Our book is not intended solely as a specialists’ monograph, but also as an
extension of an ordinary course in semiconductor theory that touches on a
new range of problems. Chapter 1 and Sects. 4.1 and 11.1 serve to connect this
book with standard courses in the theory of “pure” semiconductors. The
book is aimed at a wide readership: theoretical and experimental physicists,
graduate students, and engineers acquainted with the basics of solid-state
physics. An easier version of our book can be obtained by omitting Sects. 1.3,
2.3-2.5,5.4,5.5,8.3,10.1, 10.2, 11.3, 12.3, 13.4. It is useful to keep in mind
that as a rule all questions are discussed twice, first qualitatively and then
quantitatively. For the reader not interested in mathematical detail the quali-
tative explanation should suffice; sections which may be omitted are usually
designated as such in the text.

We substantially updated the book for the English edition, adding new re-
sults in percolation theory and hopping conduction. During the five years
since we had written our book, several significant developments had occurred
in the physics of disordered systems. One of these was the creation in 1979 of
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the scaling theory of localization by Anderson with coworkers and Thouless.
We have incorporated this theory, as we understand it, into Chapter 2 of the
present edition.

New ideas have also emerged in the understanding of electron-electron in-
teraction in disordered systems. In 1975 we proposed the idea that a Coulomb
gap may form in the vicinity of the Fermi level, which if correct would make it
necessary to revise Mott’s law for variable-range hopping conduction. In the
Russian edition we timidly devoted only one section to this question (in
Chapter 10), but since then, a number of authors have made both theoretical
and experimental contributions to this subject, and we felt compelled to write
a whole new chapter for the present edition (Chapter 14). It describes com-
puter modelling of the Coulomb gap, the impurity-band structure, and hop-
ping conduction.

In 1979—-1982 Al’tshuler and Aronov published a series of remarkable
papers devoted to the role of electron-electron interaction in disordered sys-
tems with delocalized states. We were not able to consider these concepts in
detail — otherwise we would have had to write a new book. One reason not to
do so was furnished by Al’tshuler and Aronov themselves, who discuss these
topics in a chapter of the volume entitled Electron-Electron Interaction in Dis-
ordered Systems ed. by A. L. Efros and M. Pollak (North-Holland, Amster-
dam 1984). Other contributions to that volume also substantially complement
our book.

It is a pleasure to us that Springer-Verlag has undertaken to publish the
English translation of our book. We thank Professor Mike Pollak, our long-
time friend, and Dr. Serge Luryi for their hard and selfless labor in preparing
this edition. We are grateful to our foreign colleagues B. N. Butcher,
J. Chroboczek, E. Guyon, J. J. Hauser, S. Kirkpatrick, Y. Imry, P. A. Lee,
R. Mansfield, N. F. Mott, G. A. Thomas, H. E. Stanley, J. P. Straley, and
many others who regularly send us reprints of their works, thus keeping us
abreast with the latest developments.

Leningrad, December 1983 B. I. Shklovskii - A. L. Efros
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1. The Structure of Isolated Impurity States

This chapter is a brief introduction to the theory of impurity centers in
semiconductors. The reader interested in more detail is recommended a
review by Kohn [1.1], the more recent one by Bassani et al. [1.2], and the
book by Bir and Pikus [1.3].

1.1 Shallow Impurities

At low temperatures most of the electronic properties of semiconductors are
determined by impurities. An impurity can be of either donor or acceptor
type. A donor impurity can be comparatively easily ionized in the crystal
medium by donating an electron to the conduction band. These electrons can
then participate in transport processes while the impurity centers become
positively charged. Donors give rise to the electronic type of conductivity in
semiconductors. When the impurity concentration is not too large, electrons
are captured by donors at a sufficiently low temperature and become neutral.
This phenomenon is sometimes called the "freezing-out" of conduction
electrons.

The most important characteristic of an impurity is its ionization energy,
l.e., the energy necessary to move one electron from the donor level to the
bottom of the conduction band. The freeze-out temperature is mainly
determined by this energy. On the energy-level diagram of a semiconductor
the donor levels are located in the forbidden gap (Fig. 1.1).

Ec
________ — b Fig. 1.1. Band diagram of a semiconductor. E and Ey, are,
£ respectively, the edges of the conduction and the valence
_________ A bands; Ep, and E, are the energies of the donor and accep-
Ey tor levels

A donor impurity is called shallow if its level is close to the bottom of the
conduction band, i.e., when the ionization energy is small compared to the
energy gap. Shallow impurities play a special role in semiconductor physics.
As we shall see below, their properties permit a universal description. Both in
this chapter and in the rest of the book we shall deal primarily with shallow
impurities.
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An acceptor impurity has the property of capturing one electron from the
crystal. The impurity center becomes negatively charged while a hole appears
in the valence band. Acceptors in semiconductors are responsible for
conductivity by holes, or p-type conductivity. At low temperatures holes are
frozen out, each hole being localized near an acceptor. Acceptor levels are
also located in the forbidden gap (cf. Fig.1.1). Shallow acceptors are those
whose levels are close to the top of the valence band.

Whether a given impurity is a donor or an acceptor is determined in many
cases merely by its position in the periodic table. Thus, for example, in
semiconductors of Group IV (Ge, Si), impurities which belong to Group V
(P, Sb, As) are generally donors. This rule is related to the tetrahedral
lattice structure of the Group IV semiconductors. Each atom is bound to its
four nearest neighbors with covalent chemical bonds formed by four sp?
orbitals. The elements of Group V have five valence electrons, and when
placed in a tetrahedral host structure, these atoms easily lose the excess
electron, i.e., become donors. In contrast, Group III elements lack one
electron, which they can easily capture from the host, giving rise to a mobile
hole in the valence band of the latter. Therefore in germanium and silicon
the Group III elements (B, Al, Ga, and In) become acceptors. We note that
the type of impurity is not always determined by properties of the impurity
atom itself. For example, in gallium arsenide an atom of Ge or Si can
become either a donor or an acceptor, depending on whether it substitutes for
gallium or arsenic.!

There is a situation in which the structure and energy of an impurity state
are almost independent of its particular chemical nature. This occurs in the
very important and common case of shallow impurities. To be specific we
shall discuss this situation in the instance of donors, while bearing in mind
that for acceptors the argument is similar. The proximity of a donor level to
the bottom of the conduction band implies that an excess electron is weakly
bound to the donor center, and located far from it on the average. This
means that the atomic structure of the impurity center has little influence on
the state of the extra electron, which is bound to the center only because of
the positive charge on the center. We can therefore regard the impurity
center as a point charge and assume a central potential for the electron
motion, viz.

Ur) = e?/xr , (1.1.1)

where e is the electron charge, r the distance to the center, and « the
dielectric permittivity of the lattice. It is permissible to use x when the radius
of an impurity state greatly exceeds the lattice constant. In low-symmetry
crystals « is a tensor. We note that since an impurity center does not move,

1. It is possible for a single atom to have many impurity levels of either kind, e.g., gold in
germanium has three acceptor levels and one donor level in the forbidden energy gap.
However, these are not shallow impurities (translator’s note).



