o« Windows

The serious developer’s guide to
leveraging the power of Windows 2000

For both G++ and C# developers!

Windows 2000 concurrency, threading,
processes, and exception handling

NET Framework: architecture, common
language runtime, metadata, and more

CD-ROM: Code covering the material
discussed in the book

Ronald D. Reeves D

Foreword by Andrew Scoppa
UCI Software Technical. Training

- Prentice Hall Microsoft Technologies Series

PRENTICE HALL SERIES ON MICROSOFT® TECHNOLOGIES

C44/CH
PROGRAMMER'S GUIDETO
- WINDOWS 2000° |

~ Ronald D. Reeves

PH &
PTR

Prentice Hall PTR, Upper Saddle River, N] 07458
www.phptr.com

Editorial/Production Supervision: Kathleen M. Caren
Acquisitions Editor: Mike Meehan

Development Editor: Ralph Moore

Cover Design Director: Jerry Votta

Manufacturing Manager: Maura Zaldivar

Series Design: Maureen Eide

Marketing Manager: Debby Van Dijk

Art Director: Gail Cocker-Bogusz

PII © 2002 by PrenticeHall PTR
PTR Prentice-Hall, Inc.
sl Upper Saddle River, New Jersey 07458

Prentice Hall books are widely used by corporations and government agencies for
training, marketing, and resale. The publisher offers discounts on this book when
ordered in bulk quantities. For more information, contact:

Corporate Sales Department,

Prentice Hall PTR

One Lake Street

Upper Saddle River, NJ 07458

Phone: 800-382-3419; FAX: 201-236-7141

E-mail (Internet): corpsales@prenhall.com

All rights reserved. No part of this book may be reproduced, in any form
or by any means, without permission in writing from the publisher.

Printed in the United States of America

10 9 8 7 6 5 4 3 21

ISBN 0-13-040947-2

Pearson Education Limited (UK)

Pearson Education Australia Pty Ltd

Prentice Hall Canada Ltd

Pearson Educacion de Mexico, S.A. de C.V.
Pearson Education Japan KK

Pearson Education China Ltd

Pearson Education Asia Pte Ltd

Prentice Hall, Upper Saddle River, New Jersey

FOREWOR

P

%”éisual Studio.NET represents a significant step forward in the continuing
evolution of software application development environments. The .NET
Framework represents our greatest step forward to date, in using the rich
semantics of classes and object-oriented design in communication, and con-
trol of the powerful Windows 2000 Operating System. A very powerful syn-
ergy is formed between the developer, the compiler, the .NET Framework
base classes, the Common Language Runtime (CLR), and the Windows 2000
Operating System. A great deal of the cognitive load is taken off the devel-
oper, by the encapsulating of the Windows 2000 Operating System Win32
APIs by the .NET Framework base classes. The intelligent collaboration
between the base classes, and the CLR automates and controls many func-
tions involved in Windows 2000 application development and execution.

Over the past 7 years, Dr. Ron Reeves has been a consultant and train-
er for UCI Software Technical Training. As a trainer, Ron will consistently go
the extra mile to make sure his students clearly understand the material and
at the same time make the learning experience enjoyable. As an author, he
demonstrates yet another remarkable talent. He is an excellent and gifted
writer. As a reader of this book you will like what he has to contribute.

In this first-class book, Ron has borrowed on his 40 plus years of com-
puter system design and implementation to discuss this revolutionary
approach to creating software applications. He takes a bottom-up approach
to explaining how this whole new architecture fits together. First, he covers
the Windows 2000 Operating System architecture and what major compo-
nents are in it. The next chapter then reviews how the Win32 APIs are used
to develop an application to run under Windows 2000. Of course this is the
unmanaged mode of Visual C++ and is the default for the compiler. Then he
covers the architecture of the .NET Framework and the significant compo-
nents involved in it. He shows the relationship of this framework to the
Win32 APIs of Windows 2000. He then steps on up to the Visual C++ com-
piler, and how it is structured to work in the new environment. The last
chapter then covers the new C# compiler and how it is structured to work in
the new environment. The book also points out how we are continuing to

Xi

Xii Foreword

develop more and smarter META layers of software between the developer
and the under lying hardware engine. It shows how these META layers
affects the developer’s cognitive understanding of the structure.

Andrew Scoppa
UCI software Technical Training

indows 2000 is a large and important system, and it is the core of a
more embracing architecture Microsoft calls Windows DNA 2000. In this
context DNA stands for Distributed interNet Applications, and represents
Microsoft’s vision for building distributed systems. This type of architecture is
focused on developing the new “digital nervous system” for enterprises. In
this context, the “digital nervous system” is the corporate, digital equivalent
of the human nervous system: an information system that can provide a
well-integrated flow of information at the right time, to the right place in an
organization. Such systems can be programmed at many levels, from the
lowest level of device drivers giving access to privileged instructions, to very
high levels using powerful software application development tools. This
book is aimed at Windows 2000 application programming, using C++/C#
and the Visual Studio.NET development environment. The C++/C# and
Visual Studio.NET discussions and examples are based upon the BETA
1Win32 programming required for Windows 2000. The book should prove
suitable for programmers migrating to Windows 2000 from other environ-
ments, such as UNIX and mainframes, as well as for programmers moving
up from earlier versions of Windows. A large part of the book addresses
issues of what components actually make up the .NET Framework and the
Windows 2000 Operating System. One must realize, there are numerous
constraints among all the components, and one needs to try to understand,
from the beginning, how they fit into the whole .NET Framework and the
Windows 2000 Operating System.

Learning such complex technology can be quite a challenge. The doc-
umentation is vast, equivalent to tens of thousands of printed pages, and it is
changing all the time. You can subscribe to various Internet discussion
groups, and you will receive hundreds of emails every day. There are many,
many books on different parts of this technology. But, how do you grasp the
whole picture? This book aims to be holistic, to provide a practical guide for
the C++/C# programmer. It is not a substitute for documentation or more
specialized books, including “bibles” of various sorts that help you learn dif-
ferent APIs. Rather, the book provides a tutorial, giving you all the basic
information you need to create working Windows 2000 application systems.
The book and companion CD has many example programs in both C++ and
C# to aid you in gaining an understanding of how the whole environment
fits together.

xiii

Xiv

Preface

Chapter 1 is an introduction showing an architectural overview of
Windows 2000. It shows an overall block diagram of Windows 2000 and
then discusses in general some of the key components of Windows 2000.
The chapter also contains a general description of the different versions of
Windows 2000.

Chapter 2 covers the most essential fundamentals of Windows 2000
programming for C++/C# programmers. We start off with an architectural
overview of Windows 2000. There is enough detail to enable an experienced
C++ programmer new to Windows 2000 to get an understanding of
Windows 2000. This chapter also covers the concepts of processes, threads,
jobs, and the handling of errors and exceptional conditions. The software
priority structure is also covered in this chapter. The chapter explains the use
of Win32 APIs for programming without the use of the NET Framework
base classes. We will see however, that the .NET Framework base classes
almost completely encapsulate these Win32 APIs for application develop-
ment. As a C++ programmer you can still, in native mode, work with the
Win32 APIs if you should choose to do so. You can also mix native mode
and managed code mode in your application components. C# works, as we
will see, in managed code mode only. There are keywords, however, to let
the C# code have sections of native mode code. Visual Studio.NET, as we
will see in Chapter 4, has one standard approach to handling errors and
exceptions. These topics bear directly on the issues of being able to create
scalable and robust applications discussed above. The recently published
book, Win32 System Services—The Heart of Windows 98 and Windows 2000,
by Ron Reeves and Marshall Brain, covers in detail the use of Win32 APIs for
application development.

Chapter 3 covers the most essential features of the new .NET
Framework primarily from an architectural point of view. This material is the
raison d’étre for the book. It is expected that the .NET Framework will
become absolutely central to modern Windows application architecture and
programming development. Hence, it is important for you to understand the
basics. This chapter will give you the background for the discussions in
Chapters 4 and 5 on Visual C++ and C#. COM+ will continue to play an
important role in the development of multiple-tier application systems. For
COM+ details, there are many other books on the subject, including Robert
Oberg’s book, Understanding and Programming COM+—A Practical Guide
to Windows 2000 DNA.

Chapter 4 covers the Visual C++ 7.0 compiler and what is involved in
using the compiler to create applications. The discussion is primarily based
upon the use of C++ in a managed code mode, because that is the only
mode that uses the Common Language Runtime (CLR) component. This
mode picks up all the advantages of the new management features of the
CLR. It discusses in detail the Managed Extensions for C++ that enables the
programmer to take advantage of the .NET Framework architecture. The

Preface XV

chapter covers the considerations of using the compiler in applications, as
opposed to just a language syntax discussion.

Chapter 5 covers the C# compiler and what is involved in using the
compiler to create applications. Windows 2000 and .NET Framework is
expected to rely heavily on C# for enterprise level system development.
Also, this new approach to distributed processing using C# does not require
the System Register for any of its activity—just a language syntax discussion.

The appendices cover in detail the supporting material for the chap-
ters. In some cases, a given appendix will be as big as a chapter. All the
Win32 APIs and the .NET Framework base classes are listed in the appen-
dices, along with software priority charts, and so on.

Foreword ~ xi
Preface xiii

v ONE Introduction 1
Windows 2000 Operating System Architecture 3

Executive 3
Protected Subsystems 5
Local Procedure Call Facility 5

v TWO Processes, Threads, and Jobs in Windows 2000 o

Object Categories 11
Processes 11
Creating and Terminating Processes 11

Terminating a Process 16

Process Use of Mutexes, Semaphores, and Events 17
Process Security and Access Rights 18

Threads 19
Creating and Terminating Threads 19

Terminating a Thread 22
Suspending Thread Execution 23
Thread Stack Size and Thread Local Storage 23
Thread Synchonization 27

Mutex and Semaphore Creation 28
Acquiring Mutexes, Semaphores, and Releasing 29
Events 30

Critical Section Objects 31
Thread Priorities 32
Thread Multitasking 35

Contents

Thread Pooling 36

Thread Security and Access Rights 37
Jobs 38

Creating, Opening, and Terminating Jobs

Acquiring Job Status Information 41

Managing Job’s Processes 43

I/O Completion Port and Job Notification 44

/O Completion Ports 45

v THREE .NET Framework 47

Introduction 47

NET Framework Base Closses 52
Common Type System 55
Classes 56
Interfaces 56
Value Types 58
Enumerations 59
Delegates 60

Common Language Runtime 61
Managed Execution 63
Microsoft Intermediate Language (MSIL) 64
JIT Compilation 64
Assemblies 65
Assembly Concepts 06
Versioning and DLL Conflicts 06
An End to DLL Conflicts 67
Assemblies and Deploying 67
The Minimum You Need to Know About Assemblies
Assembly Manifest 08
Assembly Custom Attributes 70
Creating Assemblies 71
Naming an Assembly 72
Assembly Location 72
Loader Optimization 73
Shared Name 74
How to Assign and Reference a Shared Name 74
Assemblies and Security Consideration 75

Contents

Assemblies and Versioning 76
How the Runtime Locates Assemblies 77
Step 1: Initiating the Bind 77
Step 2: Version Policy in the Application Configuration
Step 3: Locating the Assembly

Through Codebases or Probing 79

Locating the Assembly Through Codebases 79
Locating the Assembly Through Probing 79
Explicit Codebases 81
Probing URLs 81

Step 4: The Global Assembly Cache and
Auto-QFE Policy 81

Step 5: Administrator Policy 82
Partially Specified References 82
How the Runtime Determines Type Identity 83
Namespaces 83
How the Runtime Uses Assembly Version Information 83
An Assembly’s Informational Version 84
Specifying Version Policies in Configuration Files 85
Default Version Policy 85
Bind to a Specific Version 86
Don'’t Accept Implicit QFFs 86
Safe Mode 87
Application Domains 87
Unloading and Threads 89

Metadata and Self-Describing Components 89
What is Metadata? 89
Description of PE or Assembly 90
Description of Types 90
Attributes 90
The Benefits of Metadata 920

v FOUR Visual C++7.0 93

Infroduction 93
C++ Programming Language 94
Managed Code and Targeting the .NET Framework 94
Programming in Native Code 95

vii

77

Vil

Contents

Attributed Programming 95

ATL Server 95

New Intergrated Debugger 96
Event Handling in Visual C++ 96

Visual (++ Editions 96

What'’s Included in the Visual C++ Standard Edtion 97

What's Included in the Visual C++ Professional Edition
Programming Features 98
Internet 98
ActiveX Controls 98
Project Features 98
Optimizations 98
Database Support 99
What'’s Included in the Visual C++ Enterprise Edition

Programming with Managed Extensions for C++ 99

When to Use Managed Extensions for C++ 100
Introduction to Managed Extension for C++ 101
Managed Types 101
Garbage-Collected Classes 103
Destroying a Garbage-Collected Class 103
Value Classes 104
Value Classes and Boxing 105
Managed Interfaces 107

98

99

Implementation of Ambiguous Base Interface Methods

Default Implementation of a Method 108
Managed Arrays 109

Automatic Array Initialization 110
Multidimensional Arrays 110

Array Covariance 111

Delegates in Managed Extensions for C++ 112
Single-Cast Delegates 112

Multicast Delegates 112

Properties of Managed Objects 114
Property Types in Managed Extensions 115
Scalar Properties 115

Indexed Properties 115

108

Contents

Adding Support for Managed Extensions for
C++ to an Existing Application 117

Modifying the Existing Project Settings 117

Employing New Managed Extensions Functionality in

Existing Applications 117

Handling Exceptions Using Managed Extensions for C++

Basic Concepts in Using Managed Extentions
Throwing Exception Using Managed Extentions

Try/Catch Blocks Using Managed Extensions 119

Order of Unwinding for C++ Objects 121
Catching Unmanaged C++ Types 121
Managed Extensions and The_Finally Keyword
C++ Exceptions Examples 122

v FIVE (# 127

Introduction 127

Comparison Between C++and (# 128

General Structure of a G# Program 128

C# Version of Hello World 132

Developing a Simple Windows Forms Control 134

Class versus Component versus Control 134

v APPENDIXA APls 139
v APPENDIXB Base Priority 143
v APPENDIX C Obiject Categories 147

v APPENDIX D Functions in Alphabetic Order
(1939 APIs) 149

v APPENDIXE Win32 API Functions by Category (95)

118

173

Contents

v APPENDIXF Win32 Data Types 259

v APPENDIX G .NET Framework Nomespaces 265
v APPENDIXH Attributes 277

v APPENDIX| Debugging Visual C++ 309

v APPENDIXJ Event Handling in Visual C++ 321
v APPENDIX K Managed Extensions for C++ Reference

APPENDIX L /CLR (Common Language
Runtime Compilation) 335

<

v APPENDIX M C# Compiler Options 339
v APPENDIXN (# Keywords 345

v APPENDIX O C# Libraries Tutorial 349
About the Author 357

About UCI 359

Index 361

333

[ntroduction

gn the next few sections we will establish the main Windows 2000
Operating System capabilities for the fundamentals involved in programming
for Windows 2000. There are obviously many more sections that could be
covered, but we deemed these to be most important for understanding the
programming of Windows 2000. This fundamental knowledge, along with
the other topics covered in this book, will enable you to program the many
Windows 2000 services. Included in the Windows 2000 services are base ser-
vices, component services, data access services, graphics and multimedia ser-
vices, management services, messaging and collaboration services, network-
ing services, security, tools and languages, user interface services, and Web
services. The topics covered in the overall book should put into perspective
these Windows 2000 services, and provide a kind of roadmap for how to
program these capabilities. With this understanding, we will go into the
Visual Studio.NET software development environment and show you how to
implement applications under this new development environment. We will
show you how this seamless new development environment lets you control
and harness the power of the Windows 2000 engine.

One of the key architectural features of a sophisticated operating sys-
tem, which enables it to handle many activities concurrently, is the software
priority scheme. Usually, this is one of the first things I try to figure out when
I want to start developing application programs using the Operating System
(OS). The OS also uses a hardware priority scheme, but we will not cover
that in this book. The next thing that I like to understand is the interface
communication capabilities APIs (Application Programming Interface) that
are available to me for controlling and communicating with the OS. Of
course, rolled into this scheme of things is how the OS partitions work and
allocate resources to the various application software activities, especially

Chapter 1 « Introduction

memory allocation. The software synchronizing mechanism, available to con-
trol application and system resource allocations, is closely related to the soft-
ware priority scheme. In a pseudo real-time OS like Windows 2000 it is very
important to be able to synchronize the various events relative to thread pri-
orities. We will cover these aspects in detail as we proceed through the vari-
ous sections. These fundamentals work the same across all Windows 2000
platforms. The Windows 2000 platform consists of four products as follows:

® Windows 2000 Professional

¢ Windows 2000 Server

¢ Windows 2000 Advanced Server
® Windows 2000 Data Center

Microsoft has done an excellent job, in that the Win32 API family of
Windows 2000 programming interfaces is the standard programming inter-
face for all Windows 2000 platforms. The Win32 APIs are the interface com-
munication capabilities (APIs) that I mentioned earlier, which allow the pro-
grammer to control and communicate with the various capabilities of
Windows 2000. Microsoft has also provided a rich set of libraries, the
Windows Foundation Classes (WFC). The .NET Framework wraps the
Windows 2000 and provides a very rich semantic interface for our use of the
Windows 2000 Operating System capabilities. The Visual C++ compiler, and
the C# compiler and associated tools of the Integrated Development
Environment (IDE), allows program development, execution, and debug
within this IDE. This environment gives the programmer a simpler but pow-
erful tool, for developing application software using the Windows 2000 APIs
and associated services. If one is programming using either the WinForm or
the Web Services APIs that wrap the Win32 APIs, they significantly reduce
the software footprint the application programmer needs to worry about to
create their applications. The Microsoft Foundation Class (MFC) library and
the Active Template Library (ATL) are also available to the application devel-
oper. These libraries simplify the creation of COM+ components, Graphical
User Interfaces (GUD), database interfaces, and other aspects of application
development. Interestingly enough, ATL is integrated into MFC and allows
the best of both worlds for GUI and small efficient software component
development.

As we proceed, we will use both the C++ compiler and the C# compil-
er, and use them with the associated tools of the new Visual Studio.Net
Integrated Development Environment (Visual Studio.Net is the next release
after Visual Studio 6.0). We are using Visual Studio.Net BETA 1 so there will
be some changes by the time of the final release. However, the software
development environment does not affect the fundamentals of the Windows
2000 OS, which is what we will cover in the first few chapters of the book.
We are covering the fundamentals from the standpoint of API calls and using
them for your application. Visual Studio.Net does introduce another frame-

Windows 2000 Operating System Architecture 3

work that wraps the Windows 2000 OS; this is the .NET Framework. We will
cover this new framework after we cover Windows 2000. This framework is
middleware that sets between your application and the Windows 2000 OS.

Windows 2000 Operating System Architecture

Figure 1-1 shows the overall view of the major blocks in the Windows 2000
Operating System. As the block diagram shows, applications are kept sepa-
rate from the operating system itself. The operating-system code runs in a
privileged processor mode known as the kernel and has access to system
data and hardware. Applications run in a nonprivileged processor mode
known as user mode and have limited access to system data and hardware
through a set of tightly controlled APIs. One of the design goals of the
Windows 2000 operating system was to keep the base operating system as
small and efficient as possible. This was accomplished by allowing only
those functions that could not reasonably be performed elsewhere to remain
in the base operating system. The functionality that was pushed out of the
kernel ended up in a set of nonprivileged servers know as the protected sub-
systems. The protected subsystems provide the traditional operating system
support to applications through a feature-rich set of APIs.

Executive

The kernel-mode portion of the Windows 2000 operating system is called the
Executive and, except for a user interface, is a complete operating system
unto itself. The Executive is never modified or recompiled by the system
administrator. The Executive is actually a family of software components that
provide basic operating-system services to the protected subsystems and to
each other. The Executive components, as shown in Figure 1-1, include:

@ /O Manager

Object Manager

Security Reference Monitor
Process Manager

Local Procedure Call Facility
Virtual Memory Manager
Window Manager

Graphics Device Interface
Graphics Device Drivers

® & & @& ¢ & & @

The Executive components are completely independent of one another
and communicate through carefully controlled interfaces. This module design
allows existing Executive components to be removed and replaced with ones

