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JOSEPH FOURIER

JEAN BAPTISTE JOSEPH FOURIER was born in Auxerre, about 100 miles
south of Paris, on March 21, 1768. His fame is based on his mathematical theory
of heat conduction, a theory involving expansions of arbitrary functions in certain
types of trigonometric series. Although such expansions had been investigated
earlier, they bear his name because of his major contributions. Fourier series are
now fundamental tools in science, and this book is an introduction to their theory
and applications.

Fourier’s life was varied and difficult at times. Orphaned by the age of 9, he
became interested in mathematics at a military school run by the Benedictines
in Auxerre. He was an active supporter of the Revolution and narrowly escaped
imprisonment and execution on more than one occasion. After the Revolution,
Fourier accompanied Napoleon to Egypt in order to set up an educational in-
stitution in the newly conquered territory. Shortly after the French withdrew in
1801, Napoleon appointed Fourier prefect of a department in southern France
with headquarters in Grenoble.

It was in Grenoble that Fourier did his most important scientific work. Since
his professional life was almost equally divided between politics and science and
since it was intimately geared to the Revolution and Napoleon, his advancement
of the frontiers of mathematical science is quite remarkable.

The final years of Fourier’s life were spent in Paris, where he was Secretary
of the Académie des Sciences and succeeded Laplace as President of the Council
of the Ecole Polytechnique. He died at the age of 62 on May 16, 1830.



PREFACE

This is an introductory treatment of Fourier series and their applications to bound-
ary value problems in partial differential equations of engineering and physics. It
is designed for students who have completed a first course in ordinary differential
equations. In order that the book be accessible to as great a variety of readers as
possible, there are footnotes to texts which give proofs of the more delicate re-
sults in advanced calculus that are occasionally needed. The physical applications,
explained in some detail, are kept on a fairly elementary level.

The first objective of the book is to introduce the concept of orthonormal
sets of functions and representations of arbitrary functions by series of functions
from such sets. Representations of functions by Fourier series, involving sine and
cosine functions, are given special attention. Fourier integral representations and
expansions in series of Bessel functions and Legendre polynomials are also treated.

The second objective is a clear presentation of the classical method of sepa-
ration of variables used in solving boundary value problems with the aid of those
representations. In the final chapter, some attention is given to the verification of
solutions and to their uniqueness, since the method cannot be presented properly
without such considerations.

This book is a revision of its seventh edition, the first two of which were
written by Professor Churchill alone. While improvements appearing in earlier
revisions have been retained here, the entire book has been thoroughly rewritten.
Some of the changes in this edition are mentioned below.

The regular Sturm-Liouville problems leading to Fourier cosine and sine
series are treated by themselves in a separate section, and the same is true of
the singular problems leading to Fourier cosine and sine integrals. It seemed that
there were too many distractions when the solutions of those eigenvalue problems
were obtained in the sections devoted mainly to illustrations of the method of
separation of variables. A number of topics have been brought out of the problem
sets and presented in their own sections, because of their special interest and
importance. Examples of this are the Gibbs’ phenomenon and the Poisson integral
formula, together with the Sturm-Liouville problem involving periodic boundary
conditions needed to obtain that formula. Another example is the derivation of a
reduction formula to be used in evaluating integrals appearing in the coefficients
of various Fourier-Bessel series.

Many other changes in this edition were suggested by readers who have
spoken or written to me. Duhamel’s principle, for instance, is discussed more

XV



XVi  PREFACE

thoroughly, and there are more physical problems using it later on. The chapter
on Bessel functions now begins with a separate section on the gamma function
in order to make the presentation of Bessel functions more efficient. Also, the
Fourier-Bessel series found in this book are now listed in an appendix. While
notation can vary from author to author, I have chosen to follow the classic text
by Bartle that is listed in the Bibliography by changing to his notation for one-
sided derivatives but keeping our notation in defining one-sided limits. Finally, it
should be mentioned that problem sets appear even more frequently than in the
last edition, in order to focus more directly on the material just introduced.

A Student’s Solutions Manual (ISBN:978-007-745415-9;MHID 007-745415-4)
is available. It contains solutions to selected problems throughout the book.

This and earlier editions have benefited from the continued interest of
friends, including current and former students. The late Ralph P. Boas, Jr.,
furnished the reference to Kronecker’s extension of the method of integration by
parts, and the derivation of the laplacian in cylindrical and spherical coordinates
was suggested by a note of R. P. Agnew’s in the American Mathematical Monthly,
vol. 60, 1953. Finally, the most important source of support and encouragement
was the staff at McGraw-Hill and my wife, Jacqueline Read Brown.

James Ward Brown
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CHAPTER

FOURIER SERIES

This book is concerned with two general topics:

(i) one is the representation of a given function by an infinite series involving a
prescribed set of functions;

(i) the otherisamethod of solving boundary value problems in partial differential
equations, with emphasis on equations that are prominent in physics and
engineering.

Representations by series are encountered in solving such boundary value
problems. The theories of those representations can be presented independently.
They have such attractive features as the extension of concepts of geometry, vector
analysis, and algebra into the field of mathematical analysis. Their mathematical
precision is also pleasing. But they gain in unity and interest when presented in
connection with boundary value problems.

The set of functions that make up the terms in the series representation is
determined by the boundary value problem. Representations by Fourier series,
which are certain types of series of sine and cosine functions, are associated with
a large and important class of boundary value problems. We shall give special
attention to the theory and application of Fourier series and their generalizations.
But we shall also consider various related representations, concentrating on those
involving so-called Fourier integrals and what are known as Fourier-Bessel and
Legendre series.

In this chapter, we begin our discussion of Fourier series. Once the con-
vergence of such series has been established (Chap. 2) and a variety of partial
differential equations have been derived (Chap. 3), we shall see (Chaps. 4 and 5)
how such series are used in what is often referred to as the Fourier method for
solving boundary value problems.



2 FOURIER SERIES CHAP. 1

The first section here is devoted to a description of a class of functions that
is central to the theory of Fourier series.

1. PIECEWISE CONTINUOUS FUNCTIONS

If the values f(x) of a function f approach some finite number as x approaches
xo from the right, the right-hand limit of f is said to exist at xy and is denoted by

f(xo+). Thus
lim f(x) = f(xo+).

X=Xp
x>xg

The left-hand limit is similarly defined, so that
lim f(x) = fx0-).

\'<I0
EXAMPLE 1. Let the function f be defined for all nonzero x by means of
the equations (see Fig. 1)

P — —x when x < 0,
T lx+1 when x > 0.

Observe that the usual limit as x tends to zero does not exist. But

lim f(x) = f(0+) =1

x>0

and
lim () = f(0-) =0,
x<0
)
1
OT x
FIGURE 1
Let a function f be continuous at all points of a bounded open interval
a < x < b except possibly for a finite set of points xi, x2, ..., x,_1, where

a<Xx<X)<---<Xp1<b.

If we write xp = a and x, = b, then f is continuous on each of the n open
subintervals

1) X0 <X <X, X|<X<Xp ..., Xpq1<2X<Xp.



